Sessione d'uso pratico

SolidWorks® 2010

Sessione d'uso pratico con SolidWorks Simulation

Sede generale Dassault Systèmes SolidWorks Corp. 300 Baker Avenue Concord, MA 01742 USA Telefono: +1-978-371-5011 Email: info@solidworks.com Sede europea Telefono: +33-(0)4-13-10-80-20 Email: infoeurope@solidworks.com

Sede italiana Telefono : +39-049-8077863 Email: infoitaly@solidworks.com © 1995-2009, Dassault Systèmes SolidWorks Corporation, una società del gruppo Dassault Systèmes S.A., 300 Baker Avenue Concord, MA 01742 – USA Tutti i diritti riservati.

Le informazioni e il software ivi presentati sono soggetti a modifica senza preavviso e impegno da parte di Dassault Systèmes SolidWorks Corporation (DS SolidWorks).

Nessun materiale può essere riprodotto o trasmesso sotto qualsiasi forma o attraverso qualsiasi mezzo, elettronico o meccanico, e per qualsiasi scopo senza il previo consenso scritto di DS SolidWorks. Il software descritto in questo manuale è fornito in base alla licenza e può essere usato o copiato solo in ottemperanza dei termini della stessa. Ogni garanzia fornita da DS SolidWorks relativamente al software e alla documentazione è stabilita nell'Accordo di licenza e del servizio di abbonamento di Dassault Systèmes SolidWorks Corporation. Nessun'altra dichiarazione, esplicita o implicita in questo documento o nel suo contenuto dovrà essere considerata o ritenuta una correzione o revisione di tale garanzia.

Note di brevetto per SolidWorks Standard, Premium e Professional

Brevetti USA 5.815.154, 6.219.049, 6.219.055, 6.603.486, 6.611.725 e 6.844.877; e alcuni brevetti stranieri, compresi EP 1.116.190 e JP 3.517.643. Altri brevetti USA e stranieri in corso di concessione, ad esempio EP 1.116.190 e JP 3.517.643. Altri brevetti USA e stranieri in corso di concessione.

Marchi commerciali e altre note per tutti i prodotti SolidWorks.

SolidWorks, 3D PartStream.NET, 3D ContentCentral, PDMWorks, eDrawings e il logo eDrawings sono marchi depositati e FeatureManager è un marchio depositato di proprietà comune di DS SolidWorks. SolidWorks Enterprise PDM, SolidWorks Simulation, SolidWorks Flow Simulation e SolidWorks 2010 sono nomi di prodotti DS SolidWorks. CircuitWorks, Feature Palette, FloXpress, PhotoWorks, TolAnalyst, e XchangeWorks sono marchi commerciali di DS SolidWorks.

FeatureWorks è un marchio depositato di Geometric Ltd. Altri nomi di marca o di prodotto sono marchi dei rispettivi titolari.

SOFTWARE PER COMPUTER COMMERCIALE – PROPRIETÀ

Limitazione dei diritti per il governo statunitense. L'utilizzazione, la duplicazione o la divulgazione da parte del governo statunitense è soggetta alle restrizioni stabilite in FAR 52.227-19 (Commercial Computer Software – Restricted Rights), DFARS 252.227-7202 (Commercial Computer Software and Commercial Computer Software Documentation) e in questo Accordo, secondo quanto pertinente al caso.

Appaltatore/Produttore:

Dassault Systèmes SolidWorks Corp., 300 Baker Avenue, Concord, MA 01742 USA

Note di diritti di autore per SolidWorks Standard, Premium e Professional

Porzioni di questo software © 1990-2009 Siemens Product Lifecycle Management Software III (GB) Ltd.

Porzioni di questo software © 1998-2009 Geometric Ltd.

Porzioni di questo software © 1986-2009 mental images GmbH & Co.KG.

Porzioni di questo software @ 1996-2009 Microsoft Corporation. Tutti i diritti riservati.

Porzioni di questo software © 2000-2009 Tech Soft 3D. Porzioni di questo software © 1998-2008 3Dconnexion.

Questo software si basa in parte sul lavoro della Independent JPEG Group. Tutti i diritti riservati.

Porzioni di questo software incorporano Phys X^{TM} by NVIDIA, 2006-2009.

Porzioni di questo software sono protette dai diritti di autore e sono proprietà della UGS Corp. © 2009.

Porzioni di questo software © 2001-2008 Luxology, Inc. Tutti i diritti riservati. Brevetti in corso di concessione.

Porzioni di questo software © 2007 - 2009 DriveWorks Ltd. Copyright 1984 - 2009 Adobe Systems, Inc. e suoi concessori di licenza. Tutti i diritti riservati. Protetto dai brevetti USA 5.929.866, 5.943.063, 6.289.364, 6.639.593, 6.743.382. Altri brevetti in corso di concessione. Adobe, il logo Adobe, Acrobat, il logo Adobe PDF, Distiller e Reader sono marchi depositati o marchi commerciali di Adobe Systems Inc. negli Stati Uniti e in altri paesi.

Per ulteriori informazioni sul diritto d'autore, in SolidWorks vedere **?**, **Informazioni su SolidWorks**.

Altre porzioni di SolidWorks 2010 sono state ottenute in licenza da concessori di DS SolidWorks.

Note diritti di autore per SolidWorks Simulation

Porzioni di questo software © 2008 Solversoft Corporation. PCGLSS © 1992 - 2007 Computational Applications and System Integration, Inc. Tutti i diritti riservati.

Porzioni di questo prodotto sono distribuiti sotto licenza di DC Micro Development, Copyright © 1994 - 2005 DC Micro Development. Tutti i diritti riservati.

Sommario

Introduzione	3
SeaBotix LBV150	4
Interfaccia utente	6
Barra degli strumenti	6
Barra dei menu	6
Menu a discesa / Barra degli strumenti contestuale	7
Tasti di scelta rapida	7
Albero di disegno FeatureManager	7
Scheda CommandManager di SolidWorks Simulation	7
Pulsanti del mouse	8
Riscontri del sistema	8
Guida in linea di SolidWorks	8
Guida in linea di SolidWorks Simulation	9
Tutorial di SolidWorks e tutorial di SolidWorks Simulation	. 10
SolidWorks e SolidWorks Simulation	. 12
Analizzare l'alloggiamento	. 13
Avvio di una sessione con SolidWorks	. 14
Creare uno studio di analisi statica	. 17
Creazione di uno studio di analisi statica	. 17
Assegnazione dei materiali in SolidWorks Simulation	. 19
Selezione di parti e applicazioni del materiale in SolidWorks Simulation	. 20
Applicazione dei vincoli	. 21
Applicazione di un vincolo	. 21
Applicazione dei carichi	. 23
Applicazione di un carico di pressione	. 24
Creazione di una mesh ed esecuzione dell'analisi	. 27
Creazione di una mesh congruente	. 28
Creazione di una mesh	. 29
Visualizzazione dei risultati	. 31
Visualizzare i risultati	. 32
Creazione di un file SolidWorks eDrawings	. 39
Creazione di un file SolidWorks eDrawings	. 40
Generazione di un rapporto	. 43
Generazione di un rapporto per studio statico	. 44
Analisi 2 - Studio statico 2	. 46
Creazione di Analisi 2 - Studio statico 2	. 47
Conclusione di SolidWorks Simulation	. 55
SolidWorks Simulation Professional	. 57
Analisi con Tracker di tendenza	. 58
Analisi termica	. 67
Creare lo studio per l'analisi termica	. 68
Applicazione del materiale a EndCap	. 69
Carichi termici e condizioni al contorno	. 70
Applicazione di un carico termico	. 71
Applicazione della convezione	. 72
Creazione di una mesh ed esecuzione dell'analisi	. 74
Applicazione dello strumento Sonda (Probe)	. 76
Modificare il progetto	. 77
Creare la seconda analisi	. 78

Analisi del test di caduta	82
Creazione di uno studio del test di caduta	83
Creazione della mesh del modello	85
Esecuzione dell'analisi	86
Animazione del grafico	88
Analisi di ottimizzazione	
Creazione di un'analisi di ottimizzazione	
Analisi della fatica	100
Creazione di un'analisi di fatica	101
Applicazione del materiale	102
Aggiunta di un vincolo	103
Applicazione di una forza	105
Creazione della mesh ed esecuzione del modello	106
Generare un grafico di controllo della fatica	107
Creazione di un nuovo studio di fatica	108
Applicazione di un fattore di carico	111
Conclusione di SolidWorks Simulation Professional	112
SolidWorks Flow Simulation	114
Avvio di una sessione con SolidWorks Flow Simulation	115
Applicazione delle traiettorie di flusso	126
Applicazione delle traiettorie di flusso	127
SolidWorks Flow Simulation	131
SolidWorks Motion	133
Avvio di una sessione con SolidWorks Motion	
Applicazione del movimento a un componente	136
Applicazione di un moto lineare	137
Applicazione delle forze	139
Applicazione di una forza alle ganasce di Gripper	140
Conclusione di SolidWorks Motion	146

Sessione d'uso pratico

Completando questo manuale, l'utente avrà acquisito esperienza diretta con la funzionalità dei prodotti SolidWorks[®] Simulation, compresi:

- SolidWorks[®] Simulation
- SolidWorks[®] Simulation Professional
- SolidWorks[®] Flow Simulation
- SolidWorks[®] Motion

Introduzione

La Sessione d'uso pratico con SolidWorks[®] Simulation descrive e spiega le funzionalità ed i vantaggi dell'uso del software SolidWorks[®] Simulation per eseguire l'analisi virtuale dei progetti. Solo gli strumenti di verifica di SolidWorks Simulation forniscono integrazione diretta con il software CAD 3D SolidWorks[®], unitamente al vantaggio dato dalla facilità d'uso dell'interfaccia utente Windows[®].

L'utente apprenderà come utilizzare SolidWorks Simulation per eseguire l'analisi della sollecitazione in un progetto; SolidWorks[®] Simulation Professional per eseguire l'analisi della sollecitazione, termica, di ottimizzazione e della fatica; SolidWorks[®] Motion per eseguire le simulazioni cinematiche e SolidWorks[®] Flow Simulation per eseguire l'analisi fluidodinamica.

SeaBotix LBV150

Nel corso di questa sessione, l'utente analizzerà le parti e gli assiemi che compongono l'assieme SeaBotix LBV150 illustrato di seguito.

SeaBotix, Inc. ha progettato, realizzato e introdotto nel mercato il primo veicolo sommergibile telecomandato, leggero e a basso costo, noto con il nome di Little Benthic Vehicle. Questo prodotto innovativo è stato introdotto grazie all'uso di moderni strumenti di progettazione e analisi 3D, con i quali è stato possibile abbreviare i cicli di sviluppo, analizzare le tecnologie d'avanguardia integrate e creare forme e superfici "organiche".

L'azienda ha scelto il software di progettazione meccanica SolidWorks per il progetto Little Benthic Vehicle vista la sua facilità d'uso, la capacità di modellare forme e superfici organiche, gli strumenti di comunicazione SolidWorks[®] eDrawings[®] e l'integrazione totale con il software di analisi SolidWorks[®] Simulation.

L'assieme SeaBotix può essere azionato a distanza e utilizzato a profondità fino a 1.500 metri. Di peso inferiore a 11,34 kg, il SeaBotix rappresenta una svolta nella progettazione di veicoli sottomarini non autonomi.

L'utente avrà modo di sperimentare in prima persona la facilità d'uso del software di analisi SolidWorks[®] Simulation sulle entità seguenti:

- 1. Assieme SeaBotix LBV150
- 2. Assieme Housing
- 3. Assieme MiniGrab
- 4. Parte EndCap
- 5. Parte 3 Finger Jaw

In questa sessione sarà utilizzata la famiglia di prodotti SolidWorks Simulation:

- SolidWorks[®] Simulation Applicazione per l'analisi statica che calcola le sollecitazioni sull'assieme Housing e sulla parte EndCap.
- SolidWorks[®] Simulation Professional Applicazione per l'analisi statica, termica, del test di caduta e di ottimizzazione che verifica il progetto dell'assieme Housing e delle parti EndCap e 3 Finger Jaw.
- SolidWorks[®] Motion Applicazione per l'analisi del movimento di corpo rigido che simula l'operazione meccanica dell'assieme motorizzato MiniGrab e delle forze fisiche che genera.
- SolidWorks[®] Flow Simulation Applicazione per l'analisi fluidodinamica che fornisce informazioni sugli aspetti di flusso dei fluidi e sulle forze che agiscono sul modello dell'assieme SeaBotix LBV150 immerso in acqua.

Interfaccia utente

L'utente noterà in primo luogo che l'interfaccia utente di SolidWorks[®] è simile a quella di Microsoft[®] Windows[®]. SolidWorks è stato difatti sviluppato sulla base di Windows.

L'interfaccia utente di SolidWorks 2010 è stata studiata appositamente per trarre il massimo vantaggio dallo spazio fornito dall'area grafica. Le barre degli strumenti ed i comandi visualizzati sono ridotti al minimo. L'utente interagisce con SolidWorks mediante menu a discesa, barre degli strumenti contestuali o consolidate e schede del CommandManager.

Barra degli strumenti

La barra degli strumenti contiene una serie di pulsanti relativi alle operazioni più frequenti. Gli strumenti disponibili sono: Nuovo (New) 📄 - Crea un nuovo documento, Apri (Open) 🔗 - Apre un documento esistente, Salva (Save) 🖃 - Salva il documento attivo, Stampa (Print) Stampa il documento attivo, Annulla (Undo) 🧐 - Annulla l'ultima azione, Seleziona (Select) 🔄 - Seleziona entità di schizzo, facce, bordi ecc., Ricostruisci (Rebuild) 📳 - Ricostruisce la parte, l'assieme o il disegno attivo, Opzioni (Options) 🗐 - Modifica le opzioni

del sistema, le proprietà del documento e le aggiunte per SolidWorks.

🚳 SolidWorks 🕨 🗋 - 🔌 - 🔚 - 🌭 - 🗐 - 💽 - 🛢 🗉 -

Barra dei menu

Fare clic sul nome SolidWorks nella barra degli strumenti per visualizzare il menu predefinito nella barra dei menu. SolidWorks ha una struttura di menu dipendente dal contesto, ciò significa che i titoli dei menu rimangono uguali per tutti e tre i tipi di documento (parte, assieme e disegno), mentre gli elementi di menu cambiano a seconda del tipo di documento attivo. La visualizzazione del menu dipende anche dalla personalizzazione eseguita dall'utente per il flusso di lavoro. Gli elementi di menu predefiniti di un documento attivo sono: File, Modifica (Edit), Visualizza (View), Inserisci (Insert), Strumenti (Tools), Finestra (Window), ? (Guida) e la puntina.

Nota: la puntina *international de la puntina international de la puntina de la puntina international de la puntina de la punt*

Menu a discesa / Barra degli strumenti contestuale

La comunicazione con SolidWorks avviene mediante il menu a discesa o la barra degli strumenti contestuale a comparsa. Il menu a discesa disponibile nella barra degli strumenti o nella barra dei menu dà accesso a vari comandi.

Quando si selezionano gli elementi nell'area grafica o nell'albero di disegno FeatureManager (con un clic o doppio clic), le barre degli strumenti contestuali si visualizzano con i comandi di uso più frequente in tale contesto.

Tasti di scelta rapida

Alcune voci di menu presentano anche un tasto di scelta rapida: SolidWorks è conforme alle convenzioni di Windows nell'adozione dei tasti di scelta rapida come **Ctrl+O** per **File, Apri**; **Ctrl+S** per **File, Salva**; **Ctrl+X** per **Taglia**; **Ctrl+C** per **Copia** e così via. È inoltre possibile personalizzare SolidWorks creando scelte rapide a piacere.

Albero di disegno FeatureManager

L'albero di disegno FeatureManager[®] è un componente unico del software SolidWorks; basato sulla tecnologia brevettata di SolidWorks visualizza tutte le funzioni di una parte, un assieme o un disegno.

Via via che si creano le funzioni, queste vengono aggiunte all'albero di disegno FeatureManager. Per questo motivo l'albero di disegno FeatureManager rappresenta la sequenza cronologica delle operazioni di modellazione e consente inoltre di accedere alle funzioni e agli oggetti per modificarli. L'albero di disegno FeatureManager per le parti si compone di quattro schede

predefinite: FeatureManager	🤏 , PropertyManager	r
	DimXpertManager 🔶	

Scheda CommandManager di SolidWorks Simulation

Il CommandManager di SolidWorks Simulation consente di creare velocemente uno studio di simulazione. Fare clic sulla scheda SolidWorks Simulation nel CommandManager per creare uno studio. Gli studi sono organizzati nelle schede e visualizzati nella sezione inferiore dell'area grafica.

Nota: Per creare uno studio, utilizzare lo strumento Nuovo studio (New Study)

• o fare clic con il pulsante destro del mouse su una scheda Studio (Study), e selezionare Crea nuovo studio di simulazione (Create New Simulation Study).

Options Customize..

Add-Ins...

SolidWorks Routing

🗾 SolidWorks Simulation

🕈 SolidWorks Toolbox 👕 SolidWorks Toolbox Brows 减 SolidWorks Utilities

LBV_ASSY.SLDASM

Nota: Per attivare SolidWorks Simulation, fare clic sulla freccia del menu a

discesa **Opzioni (Options)** anella barra degli strumenti. Fare clic su **Aggiunte (Add-Ins)**. Si visualizza la finestra di dialogo Aggiunte (Add-Ins). Selezionare la casella **SolidWorks Simulation**. Fare clic su **OK** nella finestra di dialogo Aggiunte (Add-Ins). Nel CommandManager si visualizza la scheda Simulation.

Pulsanti del mouse

I pulsanti del mouse (sinistro, centrale e destro) assolvono funzioni specifiche in SolidWorks.

- Sinistro Consente di selezionare gli oggetti, ad esempio la geometria, i comandi di menu e gli elementi dell'albero di disegno FeatureManager.
- **Centrale** Tenendolo premuto mentre si trascina il mouse, la vista ruota. Tenendo premuto il tasto **MAIUSC** insieme al pulsante centrale, si ingrandisce la vista. Premendo il tasto **Ctrl**, la vista scorre o trasla.
- Destro Attiva i menu contestuali. Il contenuto del menu dipende dall'oggetto selezionato dal cursore. I menu accessibili con il pulsante destro del mouse contengono i comandi di uso più frequente e appropriati per il contesto.

Riscontri del sistema

Il sistema fornisce riscontri mediante un simbolo affisso al cursore, a indicare l'elemento in via di selezione o ciò che secondo il sistema deve essere selezionato. Quando il cursore passa sopra il modello, i riscontri sono di tipo più simbolico e viaggiano accanto al cursore.

Guida in linea di SolidWorks

SolidWorks è fornito con una guida esaustiva intesa come strumento di assistenza per utenti nuovi ed esperti. Fornisce informazioni sulle nuove funzionalità, un glossario dei termini di SolidWorks, le note di distribuzione e molto altro.

Selezionare **?**, **Guida in linea di SolidWorks ?** nella barra dei menu per visualizzare la pagina iniziale della Guida di SolidWorks.

Nota: Usa la guida in linea Web di SolidWorks è selezionata di default.

Guida in linea di SolidWorks Simulation

Selezionare Advisor dello studio (Study Advisor), Advisor dello

studio (Study Advisor) nella scheda Simulation del CommandManager quando è attivo uno studio per aprire questo advisor.

St Ad	Q udy visor ▼ N	Apply Material	Fixtures Advisor	Extern Loads	nal Connecti Adviso	ons Run r	Results Advisor	Deformed Result	Compare Results
0	N SI	udy Advisc ew Study udy Proper	r ties	itch	Evaluate	Office P	roducts	Simulatio	on

Simulation Advisor è uno strumento che assiste l'utente a decidere come creare correttamente uno studio. Si suddivide nelle categorie seguenti: *Studio (Study), Corpi e materiale (Bodies and Material), Interazioni (Interactions), Mesh ed esecuzione (Mesh and Run) e Risultati (Results).*

Simulation Advisor assiste l'utente in ogni passo, formulando domande che consentono di selezionare l'azione corretta. Per default, quando si fa clic su uno strumento di Simulation CommandManager, si avvia l'advisor pertinente. È possibile disattivare Simulation Advisor nella sezione Opzioni di Simulation (Simulation Options).

Nota: La scheda Simulation Advisor & Simulation Advisor Simulation Advisor si visualizza nel Task Pane. × Welcome to SolidWorks **A** 1 1 Study Simulation Advisor 1 B The Simulation Advisor helps 4 Mesh and Run you determine the proper 1 5 Results study type. 3 -To help you create the proper For basic static studies of 2 2 study, select one of the parts and assemblies, the following: Advisor provides information and drives the interface to Ł I am concerned about auide you through the simulation process excessive deformation or stresses The Simulation Advisor does I am concerned about the not support other types of 彭 effect of load/unload studies in this release. It also cycles. does not provide access to some features used in static Lam concerned about 🗟 sudden collapse under studies. To access full functionality, use the compression CommandManager, right-I am concerned about excessive shaking. mouse clicks on tree folders and features, or menus I am concerned about temperatures. Click here for online training on SolidWorks Simulation Courses. 🔁 Next Do not show me this again.

Tutorial di SolidWorks e tutorial di SolidWorks Simulation

I tutorial di SolidWorks sono lezioni puntuali corredate da file di esempio riguardanti la terminologia di SolidWorks, i concetti, le funzioni, le caratteristiche e molte applicazioni aggiuntive. Utilizzare le lezioni dei tutorial per acquisire nuove conoscenze o consolidare le proprie abilità.

Selezionare **?**, **SolidWorks Tutorials** o fare clic su **SolidWorks Simulation**, **Tutorial** nella barra dei menu.

Visualizzare i risultati. I tutorial sono suddivisi in categorie.

Nota: È anche possibile accedere ai tutorial di SolidWorks facendo clic sulla scheda

Risorse (Resources) nel Task Pane e selezionando **Tutorial**. Visualizzare i tutorial disponibili.

Nota: Utilizzare il tutorial sulle nuove funzionalità per conoscere le novità di SolidWorks 2010.

Help & C	• 🔗 • 🔚 • 🍇 telp	• \$) • 🕅 • 🖁
SolidWorks 1	Tutorials	
SolidWorks S	Simulation	Help Topics
	0	
API Help		
Release Not	es	Customize Menu
	SolidW	orks Resources 🛛 😼
	Creative	Carran d
	Getting	statted
		ocument
	Spen a	a Document
		<u>ls</u>
	🞽 🦩 whiles	New
	🦉 🤃 Genera	al Information
	F	
	-10.000	
SolidWorks Tutorials	SolidWorks Simu	liation Unline 😑 🔲 🔀
الله (مال الله) how Back Home Print	ு⊡்டி்∈் Show Back Home Pr	₽ int
SolidWorks Tutorials	SolidWorks Online Tuto	Simulation
functionality in an example-based learning format. Read the <u>Conventions</u> information. If you are new to the SolidWorks software, familiarize yourself with the tutorials in Getting Started first. All other tutorials can be completed in any order.	The lessons press Simulation function based learning for <u>Conventions</u> inform Selections marker	ent SolidWorks® nality in an example- mat. Read the nation.
Tutorials by Category	are available with Simulation Profess Selections marked only available with Simulation Promis	SolidWorks® sional and above. I with a (Premium) are SolidWorks®
Special Types of	Sindiatori Terric	
Models Productivity		
Building Models Enhancements	Tut	orials
Models Design Analysis	Static	Nonlinear (Premium)
All SolidWorks Tutorials (Set 1)	Fragmaney	(Fremiun)
All SolidWorks Tutorials (Set 2)	Buckling, and Thermal (Professional)	Fatigue (Professional)
Tutorials by Focus/Industry	Optimization, Dro Test, and Pressu Vessel Design (Professional)	p re Linear Dynamics (Premium)
CSWP/CSWA Consumer Product	New Simu	lation Tutorials
Machine Design Mold Design		

SolidWorks[®] Simulation è un sistema di analisi progettuale completamente integrato in SolidWorks. È una soluzione per l'analisi della sollecitazione che consente di risolvere velocemente anche problemi complessi direttamente dal proprio computer. In questa sezione di SolidWorks Simulation saranno discussi i seguenti argomenti:

- Interfaccia utente di SolidWorks Simulation
- Integrazione tra SolidWorks Simulation e SolidWorks
- Creazione di studi progettuali
- Comprensione delle fasi di analisi
- Assegnazione dei materiali
- Applicazione di vincoli e carichi
- Mesh del modello
- Esecuzione dell'analisi
- Visualizzazione dei risultati

SolidWorks e SolidWorks Simulation

SolidWorks Simulation consente di verificare un progetto e di sottoporlo a svariate iterazioni d'analisi, direttamente dall'interno di SolidWorks.

SolidWorks Simulation utilizza la scheda FeatureManager 🦻 , la scheda PropertyManager 🖆

e la scheda ConfigurationManager [8], nonché il CommandManager stesso, le schede Studio del movimento (Motion Study), la Libreria del materiale (Material Library), ecc. e molti dei comandi da mouse e tastiera tipici di SolidWorks.

Chiunque possa progettare un modello SolidWorks lo potrà analizzare senza dover imparare a utilizzare una nuova interfaccia utente. SolidWorks Simulation utilizza le configurazioni di SolidWorks per verificare molte varianti di uno stesso progetto. In più, dato che SolidWorks Simulation utilizza la geometria nativa di SolidWorks, le modifiche progettuali apportate in un'applicazione si ripercuotono automaticamente nell'altra.

A prescindere dall'applicazione industriale, SolidWorks Simulation offre significativi vantaggi alla qualità di un prodotto, poiché consente di andare oltre i calcoli manuali e verificare la fattibilità dei progetti sin dalla fase concettuale.

Study Advisor Material Fixtures	External Conr Loads Ac	¶ <u>∎</u> nection dvisor	is Run	Results Advisor	Deformed Result	Compa Resu
Assembly Layout Sk	etch Evalua	ate (• Office Pro	ducts	Simulati	on
SolidWorks Premium 20	el Motion St 010	udy - (Default _	≱ <mark>h</mark> Stu	dy 1 1	Study.
erfal Steel	Properties Tables & A	Curves A	ppearance Cri ry can not be ed	sssHatch Co	ustom Application	terial to
AIST 1010 Steel, hot rolled bar AIST 1015 Steel, Cold Drawn (SS)	Model Type:	Linear E	lastic Isotropic	~		
AISI 1020 Steel, Cold Rolled AISI 1035 Steel (SS)	Calegory	[Steel				
ADSI 1045 Steel, cold drawn ADSI 304 AISI 316 Annealed Stainless Steel Bar (SS	Def.aut.Talues ortenon:	AISI 10 Max vo	20 n Mises Stress	(V)		
AISI 316 Stanless Steel Sheet (SS) AISI 321 Annealed Stanless Steel (SS)	Description Source:					
Star ALDL 347 Anneared Stainless Steel (55) Star ALDL 347 Anneared Stainless Steel (55) ALDL 4130 Steel, normalized at 855C	Property		Value	Units		
Image: ADI 4040 Steel, annealed ADI 4040 Steel, normalized Image: ADI 4040 Steel, normalized ADI 4040 Steel Image: ADI 4040 Steel ADI 4040 Steel Image: ADI 4040 Steel ADI 4040 Steel Image: ADI 4040 Steel ADI 4040 Steel	clarific Hoddule Poisson Ratio Sheer Modulus Density Tensile Strength Compressive Strength Yield Strength Thermal Expansion (Thermal Expansion (th in X Coefficient	2.000000000 0.29 77000000000 420507000 351571000 0.000015 47 420	N/A N/A N/m*2 kg/m*3 N/m*2 N/m*2 A/ V/0(m/K) J/0(k/K)		
Cast Aloy Steel	Specific Heat		1000 C			

Analizzare l'alloggiamento

Per la prima analisi, si esaminerà la fattibilità dei componenti dell'alloggiamento Housing dell'assieme SeaBotix LBV150 in SolidWorks Simulation.

Housing è stato semplificato ai fini della lezione per questioni di tempo. Housing si compone di due EndCap e di una View Port. Il tubo di sostegno, la fotocamera e gli altri componenti sono stati eliminati.

L'intento in questa sezione è ottenere un fattore di sicurezza (FOS) maggiore di uno. Si eseguirà anzitutto un'analisi dell'assieme Housing contenente due EndCap senza le nervature strutturali, come illustrato.

Successivamente, si eseguirà una nuova analisi statica sull'assieme Housing con due EndCap e le nervature strutturali nella speranza che l'aggiunta di queste producano un FOS maggiore di uno.

Infine, si confronteranno i due studi fianco a fianco per determinare il progetto finale.

S W

Avvio di una sessione con SolidWorks

- 1 Avviare una sessione con SolidWorks.
 - Fare clic sul menu **Start**.
 - Selezionare Tutti i programmi, SolidWorks 2010, SolidWorks 2010.
- **Nota:** È possibile avviare velocemente una sessione con SolidWorks 2010 facendo doppio clic sul collegamento da desktop, se esistente.

2 Aprire l'assieme SeaBotix LBV150.

- Fare clic su Apri (Open) nella barra dei menu.
- Fare doppio clic su LBV_ASSY nella cartella SeaBotix\SolidWorks Simulation. Nell'area grafica si visualizza un sottoassieme semplificato. Visualizzare il FeatureManager.
- Nota: L'albero di disegno FeatureManager nella parte sinistra della finestra SolidWorks fornisce una vista introduttiva della parte, dell'assieme o del disegno corrente. Ciò facilita la visualizzazione della costruzione del modello o dell'assieme o l'esame dei vari fogli e delle diverse viste in un disegno.

3 Selezionare la configurazione Simulation_Original_Design.

- Fare clic sulla scheda ConfigurationManager Appaiono le varie configurazioni.
- Fare doppio clic sulla configurazione
 Simulation_Original_Design. L'assieme Housing (senza nervature) appare nell'area grafica.

- 4 Attivare SolidWorks Simulation.
 - Fare clic sulla freccia del menu a discesa

Opzioni (Options) 📃 nella barra degli strumenti.

- Fare clic su **Aggiunte (Add-Ins)**. Si visualizza la finestra di dialogo Aggiunte (Add-Ins).
- Selezionare la casella **SolidWorks Simulation**.
- Fare clic su **OK** nella finestra di dialogo Aggiunte (Add-Ins).
- **Nota:** Le aggiunte visualizzate dipendono dall'installazione del software.

La scheda Simulation viene aggiunta al CommandManager e il pulsante Simulation viene aggiunto alla barra dei menu.

lation Too

Loads/Fixture

Contact/Gaps Shells Mesh

Plot Results List Results Result Tools

 Person Study

 Fatigue
 Fatigue

 Parameters...
 Select All Feature(s)

 Export...
 Import Motion Loads

 Options...
 Options...

Study...

- 5 Impostare le opzioni di default in SolidWorks Simulation.
 - Fare clic sul pulsante **Simulation** nella barra dei menu.
 - Fare clic su Opzioni (Options) nel menu a discesa. Si visualizza la finestra di dialogo Opzioni del sistema - Generale (System Options - General).

- Fare clic sulla scheda Opzioni di default (Defaults Options). Visualizzare la finestra di dialogo Opzioni di default - Unità (Default Options - Unit).
- Fare clic sulla cartella **Unità (Units)**.
- Fare clic sulla casella SI (MKS) per selezionare questo sistema di unità.
- Selezionare mm come Lunghezza/Spostamento (Length/Displacement).
- Selezionare **Kelvin** per Temperatura (Temperature).
- Selezionare rad/sec per Velocità angolare (Angular velocity).
- Selezionare N/mm^2 (MPa) per Pressione/Sollecitazione (Pressure/Stress).

6 Impostare il Formato numero (Number format).

- Fare clic sulla cartella **Grafico a colori (Color Chart)** come illustrato.
- Fare clic su **Mobile (Floating)** come formato. Visualizzare le opzioni.
- Fare clic su **OK** nella finestra di dialogo Opzioni di default Grafico a colori (Default Options Plot Color Chart).

Units Load/Fixture Mesh Pesi itr	Display color charts Display plot details Position
Plot Color Chart	Predefined positions S Verted defined Horizontal from left: Vertical from top: 20 % Width Wride Wide Normal
Gone and a study results	Color options
- Control - Study Report	Default No of chart colors: 12 User defined Specify color for values above yield for vonMises plot

Creare uno studio di analisi statica

Creare uno studio statico. Gli studi statici calcolano gli spostamenti, le forze di reazione, le deformazioni, le sollecitazioni e il fattore di distruzione della sicurezza.

Il calcolo del fattore di sicurezza si basa sul criterio di cedimento.

Il nome del primo studio di default è Studio 1 (Study 1).

SolidWorks Simulation offre sei opzioni diverse per i risultati:

- Sollecitazione
- Spostamento
- Deformazione
- Deformata
- Fattore di sicurezza
- Dettagli del progetto

Gli studi statici possono aiutare a evitare il cedimento a causa delle alte sollecitazioni. Un fattore di sicurezza inferiore a uno indica il probabile cedimento del materiale. I fattori di sicurezza elevati in una regione continua suggeriscono che è probabilmente possibile asportare del materiale da questa regione.

Creazione di uno studio di analisi statica

- 1 Creare uno studio di analisi statica.
 - Fare clic sulla scheda
 Simulation nel CommandManager.
 - Fare clic sulla freccia del menu a discesa Advisor dello studio (Study Advisor) nel modo illustrato.
 - Fare clic su Nuovo studio (New Study) PropertyManager di Studio (Study). Studio 1 (Study 1) è il nome di default del primo studio. Accettare questo nome di default.
 - Fare clic sul pulsante **Statico (Static)** er Tipo (Type).

St SolidWorks File Edit View Insert Tools Simulation Toolbox 0 18 Shud Adviso Q¢ Study Advisor ketch Evaluate Office Products imulation New Study

SolidWorks Simulation

2 Visualizzare lo studio.

- Fare clic su OK nel PropertyManager di Studio (Study).
 Si visualizza Study 1 (-Simulation_Original_Design-).
 Visualizzare le cartelle di default.
- **Nota:** Il segno di spunta verde 📴 sulla cartella Study (Studio) indica che il materiale è assegnato.
- Nota: Se necessario, tornare al FeatureManager.

 [™] → [™] [™]	I_D •
 BV_ASSY (Simulation_Origina Osensors O Design Binder Annotations 	I_D •
- 2 Sensors ⊕	
 Design Binder Annotations 	
Annotations	
🗄 😼 Lights, Cameras and Scene	•
——————————————————————————————————————	
🔒 🔒 Origin	
	5MC
% (f) FLOAT4s<1>	
🗄 👒 (f) View Port, Acrylic 150m	<1
<	>

Assegnazione dei materiali in SolidWorks Simulation

Si può applicare un materiale ad una parte e creare o modificare un materiale nella finestra di dialogo Materiale (Material) di SolidWorks Simulation.

La scheda Proprietà (Properties) nella finestra di dialogo Materiale (Material) consente di definire una fonte di materiale, un modello di materiale e le proprietà del materiale. Possono anche essere definite le proprietà dipendenti dalla temperatura o costanti.

La definizione dei materiali in Simulation non aggiorna il materiale assegnato nel modello in SolidWorks.

Definire e applicare il materiale alle due parti EndCap dell'assieme Housing nella sezione successiva.

😑 🔠 Steel 🛛 🔥	Properties	Tables & Curv	ves A	ppearance	CrossHatch	Custom	Application Data F	
1023 Carbon Steel Sheet (SS)	Matorial	properties						
3∃ 201 Annealed Stainless Steel (SS)	Materia	als in the defau	ılt librər	w can not be	edited You	must first	copy the material to	
A286 Iron Base Superalloy	a custo	om library to ec	lit it.	, cannot be	outour rou			
Seel, hot rolled bar	Madal	T		l				
STAISI 1015 Steel, Cold Drawn (SS)	Model	Type:	inear E	lastic Isotropi				
	Units:	9	5I - N/m	n^2 (Pa)	*	•		
SE AISI 1020 Steel, Cold Rolled	Cabaca		Feed					
Steel (SS)	Caleyi	1997 L	JUECI					
SE AISI 1045 Steel, cold drawn	Name:	ł	AISI 10	20				
3 AISI 304	Defaul	t failure		Mara Chara		ta l		
Steel Bar (55	criterio	in:	nax voi	n mises oures				
SE AISI 316 Stainless Steel Sheet (SS)	Descrip	otion:						
E AISI 321 Annealed Stainless Steel (SS)								
E AISI 347 Annealed Stainless Steel (SS)	Source	£						
SE AISI 4130 Steel, annealed at 865C		/		La secono de la composición de la compo	L			
SE AISI 4130 Steel, normalized at 870C	Property		_	Value	Units			
SE AISI 4340 Steel, annealed	Elastic Mo	Daulus Ratia		2000000000	JU N/m^2			
E AISI 4340 Steel, normalized	Shear Mo	dulus		7700000000	1 N/m^2	N/A Népé2		
E AISI Type 316L stainless steel	Density			7900	ka/m^3			
SE AISI Type A2 Tool Steel	Tensile St	trength		420507000	N/m^2			
Steel	Compress	sive Strength in	hХ		N/m^2			
E Alloy Steel (SS)	Yield Stre	ngth		351571000	N/m^2			
ASTM A36 Steel	Thermal E	Expansion Coet	fficient	0.000015	K			
E Cast Alloy Steel	Thermal C	Conductivity		47	VW(m·K)			
Cast Carbon Steel	Specific H	Heat		420	J/(kg·K)			
Cast Carbon Steel (SN)	Material D	amping Ratio			NUA			

Selezione di parti e applicazioni del materiale in SolidWorks Simulation

- 1 Selezionare le due parti EndCap.
 - Espandere la cartella **Parti (Parts)**.
 - Fare clic sulla prima parte **CH EndCap**.
 - Tenere premuto il tasto CTRL.
 - Fare clic sulla seconda parte CH EndCap.
 - Rilasciare il tasto **CTRL**.
 - Fare clic su **Applica materiale (Apply Material)** nella scheda Simulation del CommandManager. Si visualizza la finestra di dialogo Materiale (Material).
- 2 Assegnare il materiale.
 - Espandere la cartella Acciaio (Steel).
 - Fare clic su **AISI 1020**. Visualizzare le proprietà e le informazioni disponibili per il materiale.
 - Fare clic su Applica.
 - Fare clic su Chiudi nella finestra di dialogo Materiale (Material). Visualizzare i risultati nell'albero dello studio.
- Nota: Il segno di spunta verde 🚿 sulla cartella Parti (Parts) indica che il materiale è assegnato alle parti.

Applicazione dei vincoli

Un componente che non è fisso si sposterà di una distanza indefinita nella direzione del carico applicato, fungendo da corpo rigido. I vincoli e i carichi definiscono l'ambiente del modello.

Un corpo rigido ha sei gradi di libertà, tre rotazionali e tre traslazionali. I vincoli servono per eliminare questi gradi di libertà.

Ogni condizione di carico o di vincolo è rappresentata da un'icona nello studio.

In questa sezione, ci occuperemo di un vincolo applicato ad una faccia cilindrica.

Applicazione di un vincolo

- 1 Applicare un vincolo.
 - Fare clic sulla freccia del menu a discesa Advisor del vincolo (Fixture Advisor) nella scheda Simulation del CommandManager.
 - Fare clic su Geometria fissa (Fixed Geometry). Si visualizza il PropertyManager di Vincolo (Fixture). L'opzione Geometria fissa (Fixed Geometry) è attivata per default. Fissare il modello per simulare il montaggio dei due componenti EndCap su Housing.
- 2 Selezionare le facce da vincolare.
 - Fare clic sulla faccia cilindrica di EndCap destro nel modo illustrato. Faccia<1> (Face<1>) si visualizza nella casella Standard (Geometria fissa, Fixed Geometry).
 - Fare clic sulla faccia cilindrica di EndCap sinistro nel modo illustrato.

- 3 Impostare il tipo di vincolo.
 - **Espandere** la finestra di dialogo Avanzato (Advanced).
 - Fare clic sulla casella Su facce cilindriche (On Cylindrical Faces). Si visualizza la finestra di dialogo Traslazioni (Translations).

4 Selezionare le unità e i componenti di spostamento.

- Selezionare mm dal menu a discesa Unità (Unit).
- Fare clic sulla scheda Circonferenziale
 (Circumferential)
- Fare clic sulla casella Assiale (Axial) Visualizzare i risultati nell'area grafica.
- 5 Applicare il vincolo.
 - Fare clic su OK nel PropertyManager di Vincolo (Fixture). Nella cartella Vincoli (Fixture) appare

un'icona 🟮 di nome Su facce cilindriche-1 (On Cylindrical Faces-1).

Nota: Premere il tasto **f** per adattare il modello alle dimensioni dell'area grafica.

Applicazione dei carichi

I carichi sono forze e pressioni applicati a facce, bordi e vertici del modello. In SolidWorks Simulation è possibile applicare carichi variabili e uniformi sotto forma di forza e pressione, torsione, carico da cuscinetto e forze agenti sul corpo come la gravità e la forza centrifuga.

- Si applicherà un carico di pressione a Housing. La pressione simula approssimativamente 3.400 piedi di acqua marina.
- **Nota:** In questa sezione saranno utilizzate le unità del sistema imperiale (IPS). Ogni 33,3 ft di acqua marina equivale all'incirca a 1 atm ovvero 14,7 psi.
 - Applicare il tipo di pressione Normale alla faccia selezionata (Normal to selected face).
 - Selezionare tutte le facce esposte di Housing per applicare un carico di pressione che simuli la pressione in profondità dell'acqua di mare.

Applicazione di un carico di pressione

- 1 Applicare un carico di pressione.
 - Fare clic sulla freccia del menu a discesa
 Carichi esterni (External Loads) nella scheda Simulation del CommandManager.
 - Fare clic su Pressione (Pressure) . Si visualizza il PropertyManager di Pressione (Pressure). La scheda Tipo (Type) è selezionata di default.
 - Fare clic sulla casella Normale alla faccia selezionata (Normal to selected face).
- 2 Selezionare le facce su cui applicare il carico.
 - Ruotare il modello con il pulsante centrale del mouse, nel modo illustrato.
 - Fare clic sul componente EndCap frontale nel modo illustrato. Faccia<1> (Face<1>) appare nella casella Facce per pressione (Faces for Pressure).
 - Ingrandire EndCap frontale nel modo illustrato.
 - Fare clic sulle altre **tre facce** di EndCap frontale. Faccia<2> (Face<2>), Faccia<3> (Face<3>) e Faccia<4> (Face<4>) appaiono nella casella Facce per pressione (Faces for Pressure).
- Nota: Se si seleziona una faccia errata, fare clic con il pulsante destro del mouse nella casella Facce per pressione (Faces for Pressure) e scegliere
 Elimina (Delete) per eliminare oppure Azzera selezioni (Clear Selections) per deselezionare tutte le entità.

Nota: Gli ID delle facce in elenco possono differire.

SolidWorks Simulation

- 3 Selezionare la faccia View Port.
 - Premere il tasto f per adattatore il modello alle dimensioni dell'area grafica.
 - Ruotare il modello con il pulsante centrale del mouse, nel modo illustrato.
 - Fare clic sulla faccia View Port. Faccia<1> (Face<5>) appare nella casella Facce per pressione (Faces for Pressure). Notare il simbolo di riscontro sull'icona corrispondente a una faccia e le informazioni visualizzate per la funzione.
- Nota: Non selezionare una faccia interna.
 - 4 Selezionare le facce su cui applicare il carico.
 - Ingrandire EndCap posteriore nel modo illustrato.
 - Ruotare il modello con il pulsante centrale del mouse per selezionare le altre quattro facce di EndCap posteriore.
 - Fare clic sulle quattro facce di EndCap posteriore nel modo illustrato. Appaiono nove facce nella casella Facce per pressione (Faces for Pressure).

- 5 Impostare il valore di pressione.
 - Selezionare **psi** dal menu a discesa Unità (Units).
 - Immettere 1.500 nella casella Valore di pressione (Pressure Value).

- 6 Applicare la pressione.
 - Fare clic su **OK** *I* nel PropertyManager di Pressione (Pressure). SolidWorks Simulation applica una pressione di

1.500 e crea un'icona 🛄 di nome Pressione-1 (Pressure-1) nella cartella Carichi esterni (External Loads), nel modo illustrato.

- 7 Adattare il modello all'area grafica.
 Premere il tasto f. Visualizzare il modello nell'area grafica.
- **Nota:** Se si cambiano le unità dopo aver immesso un valore, SolidWorks Simulation lo converte nelle nuove unità.

Creazione di una mesh ed esecuzione dell'analisi

La creazione della mesh è una fase fondamentale nell'analisi di un progetto. La tecnica di mesh consiste essenzialmente nel suddividere la geometria in molte piccole porzioni di forma semplice, i cosiddetti elementi finiti. Il mesher automatico di SolidWorks Simulation genera una mesh basata su una dimensione di elementi globale, su una tolleranza e un controllo mesh locale. Il controllo mesh consente di specificare dimensioni diverse degli elementi di componenti, facce, bordi e vertici.

SolidWorks Simulation calcola la dimensione globale degli elementi per il modello prendendone in considerazione il volume, l'area di superficie e altri dettagli geometrici. La dimensione (o densità) della mesh generata (numero di nodi e di elementi) dipende dalla geometria e dalla dimensione del modello e degli elementi, dalla tolleranza di mesh, dal controllo mesh e delle impostazioni di contatto.

La mesh genera elementi solidi tetraedrici 3D, elementi shell triangolari 2D ed elementi trave 1D. Una volta creata la mesh, è possibile eseguire l'analisi. SolidWorks Simulation risolve una serie di equazioni in base alle proprietà note del materiale, dei vincoli e dei carichi. Le soluzioni statiche forniscono informazioni su spostamento, sollecitazione e deformazione.

Prima della mesh

Dopo la mesh

Study 1 (-Simulation_Original_Design

S Parts

Creazione di una mesh congruente

- 1 Creare una mesh congruente
 - Espandere Contatto del componente (Component Contact) nell'albero dello studio.
 - Fare clic con il pulsante destro del mouse su Contatto globale (-Unito) (Global Contact -Bonded-).
 - Fare clic su Modifica definizione (Edit Definition). Si visualizza il PropertyManager di Contatto del componente (Component Contact).
 - Fare clic su Mesh congruente (Compatible mesh) nella casella Opzioni (Options). Accettare le impostazioni predefinite.
 - Fare clic su **OK** *I* nel PropertyManager Contatto del componente (Component Contact). Nella prossima sezione si avvierà la creazione della mesh.

Nota: È anche possibile fare clic con il pulsante destro del mouse su Studio 1 (Study 1) e selezionare Proprietà (Properties) per impostare la congruenza della mesh. Selezionare la casella Migliora la precisione per il contatto delle superfici con mesh non congruente (Improve accuracy for contacting surfaces with incompatible mesh).

Compatible mesh
 Incompatible mesh

Creazione di una mesh

1 Creare una mesh.

- Fare clic sulla freccia del menu a discesa **Esegui (Run)** nella scheda Simulation del CommandManager.
- Fare clic su Crea mesh (Create Mesh) . Si visualizza il PropertyManager di Mesh con i valori suggeriti per Dimensione globale (Global Size) e Tolleranza (Tolerance).

2 Esaminare le opzioni di mesh.

- Espandere la casella Parametri della mesh (Mesh Parameters). Visualizzare le opzioni disponibili.
- Espandere la casella **Avanzato (Advanced)**. Visualizzare le opzioni avanzate disponibili per un maggiore controllo.

- 3 Avviare la procedura di mesh.
 - Fare clic su OK nel PropertyManager di Mesh. La generazione della mesh ha inizio e si apre la finestra Progresso della mesh (Mesh Progress). Al termine, SolidWorks Simulation visualizza il modello con la

mesh. Un segno di spunta verde <u>s</u> appare accanto alla cartella Mesh nello studio.

- Nota: Fare clic con il pulsante destro del mouse su Mesh. Fare clic su Nascondi mesh/Mostra mesh (Hide Mesh/Show Mesh) per commutare la visibilità della mesh.
- Nota: Fare clic con il pulsante destro del mouse su Vincoli (Fixtures). Fare clic su Nascondi tutto/ Mostra tutto (Hide All/Show All) per commutare la visibilità di carichi e vincoli.

- 4 Eseguire l'analisi.
 - Fare clic su **Esegui (Run)** Nella scheda Simulation del CommandManager. Vengono creati i tre grafici di default.

Visualizzazione dei risultati

Dopo aver eseguito l'analisi statica, SolidWorks Simulation crea tre grafici di default: Sollecitazione, Spostamento e Deformazione.

I risultati sono utilizzati insieme ai criteri progettuali per dare risposta alle seguenti domande:

- Il modello cederà?
- Il modello si deformerà?
- È possibile ridurre la quantità di materiale o cambiare materiale senza compromettere le prestazioni?
- Nota: I risultati possono variare a seconda della velocità della mesh.

Visualizzare i risultati

- 1 Nascondere i carichi esterni.
 - Fare clic con il pulsante destro del mouse sulla cartella Carichi esterni (External Loads).
 - Fare clic su Nascondi tutto (Hide All).
- 2 Visualizzare le sollecitazioni von Mises.
 - Fare doppio clic su Sollecitazione1 (-von Mises-) (Stress1 -von Mises-). Si visualizza il PropertyManager di Grafico di sollecitazione (Stress Plot). È possibile modificare le unità del grafico a piacere utilizzando il PropertyManager.
 - Fare clic su OK nel PropertyManager di Grafico di sollecitazione (Stress Plot).

Show All
⊆ору

Nota: La sollecitazione von Mises indica le forze interne di un corpo di materiale duttile soggetto a carichi esterni. La maggior parte dei materiali tecnici è di tipo duttile.

- Nota: Per visualizzare il grafico di sollecitazione con unità di misura diverse, fare clic con il pulsante destro del mouse sull'icona del grafico attivo. Fare clic su Modifica definizione (Edit Definition). Impostare le unità. Fare clic su OK nel PropertyManager di Grafico di sollecitazione (Stress Plot).
 - 3 Nascondere i vincoli.
 - Fare clic con il pulsante destro del mouse sulla cartella Vincoli (Fixtures).
 - Fare clic su Nascondi tutto (Hide All).

- 4 Mostrare una vista in sezione attraverso il piano superiore.
 - Fare clic sulla scheda **FeatureManager** 1 di SolidWorks.
 - Fare clic su **Superiore (Top)** per selezionare il piano superiore nel modo illustrato.
 - Fare clic sulla freccia del menu a discesa Strumenti del grafico (Plot Tools) nella scheda Simulation del CommandManager.
 - Fare clic sullo strumento Taglio di sezione (Section Clipping)
 come illustrato. Si visualizza il PropertyManager di Sezione (Section). Nella casella dell'entità di riferimento appare Superiore (Top).
 - Selezionare la casella Mostra piano in sezione (Show section plane).
 - Deselezionare la casella Mostra contorno sulla porzione non tagliata del modello (Show contour on the uncut portion of the model). Visualizzare le impostazioni predefinite.

- Fare clic su **OK** ✓ nel PropertyManager di Sezione (Section).
- Ruotare il modello con il pulsante centrale del mouse nel modo illustrato per visualizzare i risultati.
- **Nota:** La deformata è stata ingrandita per una migliore visibilità. È possibile visualizzare la deformata con un fattore di scala a piacere.
- Nota: Utilizzare lo strumento Zoom area (Zoom to Area) a della barra degli strumenti Vista con preavviso (Heads-up View) per ingrandire una sezione del modello.

5 Mostrare una vista isometrica.

Fare clic sulla vista **Isometric (Isometrica)** nella barra degli strumenti Vista con preavviso (Heads-up View).

- 6 Sondare il modello.
 - Ingrandire EndCap frontale.
 - Fare clic sulla freccia del menu a discesa Strumenti del grafico (Plot Tools) nella scheda Simulation del CommandManager.
 - Fare clic su Sonda (Probe) . Si visualizza il PropertyManager di Risultato sonda (Probe Results).
 - Fare clic su **cinque punti** nel modo illustrato.
 - Fare clic sul pulsante **Grafico (Plot)** I nella casella Opzioni di rapporto (Report Options). Visualizzare i risultati.
- **Nota:** I risultati dipendono dai punti selezionati.

- 7 Esaminare il grafico.
 - Esaminare il grafico. Questo è un modo ideale per esaminare le variazioni di sollecitazione nella geometria della parte.
- 8 Chiudere la finestra di dialogo Risultato sonda (Probe Results).
 - Chiudere la finestra di dialogo Risultato sonda (Probe Results).
- 9 Chiudere il PropertyManager di Risultato sonda (Probe Results).
 - Fare clic su OK nel PropertyManager di Risultato sonda (Probe Results).

- 10 Disattivare il grafico di sezione.
 - Fare clic sulla freccia del menu a discesa Strumenti del grafico (Plot Tools) nella scheda Simulation del CommandManager.
 Fare clic sullo strumento Taglio di
 - Fare clic sullo strumento **Taglio di** sezione (Section Clipping) . Si visualizza il PropertyManager di Sezione (Section).
 - Fare clic sul pulsante Taglio On/Off
 (Clipping on/off) nella casella
 Opzioni (Options) nel modo illustrato.
 - Fare clic su **OK** *I* nel PropertyManager di Sezione (Section).

11 Adattare il modello all'area grafica.

Premere il tasto f. Visualizzare i risultati nell'area grafica.

- 12 Visualizzare il grafico di spostamento.
 - Fare doppio clic su Spostamento1 (-Disp res-) (Displacement1 -Res disp-) nella cartella Risultati (Results). Visualizzare il grafico.

13 Animare il grafico di spostamento.

- Fare clic sulla freccia del menu a discesa Strumenti del grafico (Plot Tools) nella scheda Simulation del CommandManager.
- Fare clic su Animare (Animate) . Si visualizza il PropertyManager di Animazione (Animation). Visualizzare l'animazione nell'area grafica.

14 Fermare l'animazione.

■ Fare clic su Ferma (Stop) .

15 Salvare l'animazione.

- Selezionare la casella Salva come file AVI (Save as AVI file).
- Fare clic sul pulsante **Sfoglia**. Accettare la posizione di default.
- Fare clic su Salva (Save) nella finestra di dialogo Salva con nome (Save As).
- Fare clic su **OK** *I* nel PropertyManager di Animazione (Animation).

16 Calcolare il fattore di sicurezza.

- Fare clic con il pulsante destro del mouse sulla cartella Risultati (Results).
- Fare clic sullo strumento **Definisci grafico del fattore**
 - di sicurezza (Define Factor of Safety Plot) Si visualizza il PropertyManager di Fattore di sicurezza (Factor of Safety).
- Selezionare il primo componente CH End Cap dal menu a discesa, nel modo illustrato.
- Come criterio, selezionare Sollecitazione massima von Mises (Max von Mises Stress) dal menu a discesa. Si osservino le opzioni disponibili per Criterio (Criterion).

mate stress used for ductile materi Mohr-Coulomb used for brittle

- Fare clic su Avanti (Next) ger continuare con il passaggio 2. Accettare le impostazioni predefinite.
- Fare clic su Avanti (Next) per continuare con il passaggio 3.
- Fare clic sulla casella Aree sotto il fattore di sicurezza (Areas below factor of safety).
- Fare clic su OK nel PropertyManager di Fattore di sicurezza (Factor of Safety). Visualizzare il modello nell'area grafica.
- Ruotare il modello con il pulsante centrale del mouse. L'area blu ha un FOS maggiore di 1. L'area rossa ha un FOS minore di 1.

- Fare clic con il pulsante destro del mouse su Fattore di sicurezza1 (Factor of safety1) nella cartella Risultati (Results).
- Fare clic su Opzioni grafiche (Chart Options).
 Si visualizza il PropertyManager di Opzioni grafico (Chart Options).

- Selezionare la casella Mostra annotazione min (Show min annotation). Accettare le impostazioni predefinite. Visualizzare i risultati nell'area grafica.
- Fare clic su **OK** *I* nel PropertyManager di Opzioni grafiche (Chart Options). Visualizzare i risultati.
- Ruotare il modello con il pulsante centrale del mouse.
 Visualizzare l'area in rosso. L'area rossa ha un FOS minore di 1.
 L'area blu ha un FOS maggiore di 1.
- **Nota:** Il FOS minimo è 0,67. L'intento di progetto non è soddisfatto, perché il FOS deve essere maggiore di 1. Nel prossimo studio, si aggiungeranno nervature strutturali a EndCap per soddisfare l'intento di progetto.

-		
	Chart Options	?
~ :	×	
Disp	lay Options	~
	Show max annotation Show plot details Show Min/Max range on shown parts only	
Posil	tion/Format	*
	%	
	%	
112.32 1.Xe2	floating	~
1.3335	2	-
	Use 1000 Separator (,)	10000

Creazione di un file SolidWorks eDrawings

È possibile salvare i grafici dei risultati nel formato SolidWorks eDrawings[®]. L'applicazione SolidWorks eDrawings è un modo semplice per animare e visualizzare i risultati dell'analisi. È possibile ruotare e applicare lo zoom a un file SolidWorks eDrawings utilizzando il visualizzatore eDrawings. I file eDrawings sono compatti e contengono un visualizzatore e per questo sono un mezzo comodo per l'invio tramite email.

🖯 On Cylindrical Faces-1 (:v

III Pressure-1 (:1500 psi:)

Displacement1 (-Res disp

NS Strain1 (-Equivalent-) 隆 Factor of Safety1 (-M

눩 Design Insight

Section Clipping

Iso Clipping

List Selected

Plot Tools

6

1 Probe Z

W Save As Animate

Fixtures

Mesh

🕒 Results

💕 Stres

External Loads

Creazione di un file SolidWorks eDrawings

- Creare un file SolidWorks eDrawings. 1
 - Fare doppio clic su Sollecitazione1 (-von Mises-) (Stress1 -von Mises-) nella cartella Risultati (Results).
 - Fare clic sulla freccia del menu a discesa Strumenti del grafico (Plot Tools) nella scheda Simulation del CommandManager.
 - Fare clic su Salva con nome (Save As) la finestra di dialogo Salva con nome (Save As).
 - Selezionare File eDrawings (eDrawings File) come tipo. Accettare il nome e la posizione di default.
 - Fare clic su Save (Salva).

Pubblicare un file SolidWorks 2 eDrawings.

Fare clic su File, Pubblica il file eDrawings (Publish

eDrawings File) 🤹 nella barra dei menu. Si visualizza la finestra di dialogo Salva configurazioni nel file eDrawings (Save Configurations to eDrawings file).

- Accettare le impostazioni predefinite. Fare clic su OK nella finestra di dialogo. Visualizzare il file eDrawings.
- Fare clic su **Esegui** . Visualizzare il file eDrawings.
- Fare clic su Ferma (Stop) ■.

SolidWorks eDrawings Professional 2010

- 3 Visualizzare il grafico Sollecitazione1 (-von Mises-) (Stress 1 -von Mises-).
 - Fare clic su **File**, **Apri (Open)** nel menu principale di eDrawings.
 - Fare doppio clic su LBV-ASSY-Study 1 nella cartella dello studio salvato.
 Visualizzare il file eDrawings per il grafico von Mises.
 - Fare clic su **Esegui** ►. Visualizzare il file eDrawings.
 - Fare clic su Ferma (Stop) ■.
 - **Chiudere** il file eDrawings e tornare a SolidWorks Simulation.
 - Fare clic su **No**. Non salvare il file eDrawings.

	Save As
pen Look in:	LBV_ASSY-Study 1 💽 🖓 🌮 🔛 -
History	n2
Desktop	
Favorites	File name: Open
Web Folders	Files of type: eDrawings Files (*.eptt,*.easm,*.edrw,*.eprtx, Cance Open as read-only

Generazione di un rapporto

L'opzione Rapporto (Report) genera un documento HTML o Microsoft[®] Word da distribuire per la revisione a colleghi e superiori. Il rapporto descrive ogni aspetto dell'analisi, comprese le proprietà del materiale, i vincoli e i carichi applicati e i risultati.

SolidWorks Simulation genera i rapporti in formato HTML o Microsoft Word.

Formato HTML

Generazione di un rapporto per studio statico

- 1 Generare un rapporto di studio statico.
 - Fare clic su Rapporto (Report) 📴 nella scheda Simulation del CommandManager.
 - Selezionare (Contemporaneo) **Contemporary** come stile.
 - Selezionare la casella Autore (Author).
 - Immettere un valore per Autore (Author).
 - Selezionare la casella Società (Company).
 - Immettere un valore per Società (Company).
 - Passare in rassegna l'elenco delle sezioni incluse. Visualizzare le opzioni.
 - Selezionare la casella Mostra rapporto in pubblicazione (Show report on publish). Accettare le impostazioni predefinite.

		Simulation	-
ort Options			
Curren	report format: Default		
Report format se	ttings		
Report	style: Contemporary		~
Available s	ections: Inc	cluded sections:	
	> Cover P	tion	Move up
	Assump Model I	nformation	Move down
	Study F	Properties	Pemove
-Section propert	ог.	1 D	
Name:	Cover Page		
Commonter	Test		
Comments:			
Logo:			Browse
Author:	John Smith		
Company:	xyz 🔶		
Document setting	S CUDocuments and Sottings	mplanchard\My Docu	r Dunun
Report path:		implancharu (my Ducu	Browse
Report name:	LBV_ASSY-Study 1-1		
	nort on publich		

- 2 Visualizzare i risultati.
 - Fare clic sul pulsante Pubblica (Publish). Microsoft Word si apre e visualizza il rapporto. Esaminare il contenuto del rapporto. Si osservi che i grafici dei risultati sono inclusi.
- 3 Chiudere il rapporto.
 - Chiudere il rapporto uscendo da Microsoft Word e tornando a SolidWorks Simulation. Si visualizza la cartella Rapporto (Report).
- **Nota:** I rapporti sono interamente personalizzabili.

	ſ	
	I	
Nor1		
De not have year design desixints wildown the d	interested in this next. We design makes in any and/or with one size	ni anusi mutal energy
Delf taling is minditivy to soldify your final o	leige. Analaise hebs we relace your bee-to-market ty relacing he wit d	sinding feldlest. 1
1	Page Break	
	r ago stroat.	
Table of Contents¶		
Fable of Contents		2
List of Figures		21
Description		31
Arrangtion		
Model Information.	•	
Judy Properties		
Jnits		
Material Properties	*	
Loads and Restraints	+	61
Connector Definitions		<u>ها</u>
Contact		
Mesh Isloundion		
Design Scenario-Results		
lemor Renth		6]
Reaction Forces		្ត
Free-Dody-Forces		7]
Bolt Forms		71
Pin Fostes		
Italy Results		7]
Conduion		

Gonnections

Fixtures

Mesh Report Study 1-1

🛃 External Loads

Component Contacts

Heressure-1 (:1500 psi:)

Mathematical Stress1 (-vonMises-)
Mathematical Stress Displacement1 (-Res disp-)
Mathematical Stress Displayer (-Equivalent-)

On Cylindrical Faces-1 (:variable:)

😽 Factor of Safety1 (-Max von Mises Stress-)

Analisi 2 - Studio statico 2

Nello Studio 1 (Study 1) i rapporti indicavano aree critiche con un fattore di sicurezza minore di 1.

In veste di progettista, si deve decidere come aumentare questo fattore di sicurezza.

- Cambiando il materiale?
- Modificando il modello esistente?
- Riesaminando i vincoli e i carichi?

In questa sezione l'utente:

- Modificherà EndCap nell'assieme Housing. Aggiungerà le nervature a EndCap per aumentare l'integrità strutturale di Housing. (Per motivi di tempo, ci limiteremo a riattivare le nervature dal FeatureManager di EndCap.)
- Copierà le informazioni dallo studio 1 allo studio 2.
- Creerà la mesh ed eseguirà una nuova analisi.
- Visualizzerà i risultati dello studio 2.
- Confronterà i grafici di sollecitazione e FOS tra lo studio 2 e lo studio 1.

Creazione di Analisi 2 - Studio statico 2

- 1 Creare lo studio 2.
 - Fare clic con il pulsante destro del mouse sulla scheda
 Studio 1 (Study 1) nella porzione inferiore dell'area grafica.
 - Fare clic su Duplica (Duplicate). Si visualizza la finestra di dialogo Definisci nome studio (Define Study Name).
 - Immettere Studio 2 (Study 2) come nome dello studio.
 - Fare clic su OK nella finestra di dialogo Definisci nome studio (Define Study Name). Si visualizza lo studio 2.

Nota: Lo studio 2 è una copia dello studio 1.

- 2 Modificare la parte EndCap.
 - Fare clic sulla scheda Modello (Model) in fondo all'area grafica.
 - Espandere CH End Cap 300m STBD-no tab-revf.
 - Fare clic con il pulsante destro del mouse su RipetizioneCircolare1 (CirPattern1).
 - Fare clic su Riattiva (Unsuppress) [1] nella barra degli strumenti contestuale. L'assieme Housing appare nell'area grafica con i componenti EndCap con le nervature. Entrambe le varianti di questa parte sono aggiornate.
 - Ruotare il modello con il pulsante centrale del mouse per visualizzare le nervature riattivate.

3 Tornare allo studio 2.

■ Fare clic sulla scheda **Studio 2 (Study 2)** in fondo all'area grafica.

	Duplicate
	Rename K
	Delete
	Create New Motion Study
	Create New Simulation Study
	Create New Design Study
del Motion Study - Default	%* Suuuy 1
Define Study Nam	ie 🔀
Study Name :	
Study 2	
Configuration to use:	
Simulation_Uriginal_	Design
	Conneal
	Caricei Heip
	¥ Study 1] ¥ Study 2 [
🕁 🕵 (f) View Dort	Acrulic 150m<1> .> (COSM
	Activite 130III<1>-> (COShi
(r) CH End Ca	p - 300m STBD-no cab-revr«
🕀 🚯 Mates in L	BV_ASSY
Sensors	
🕀 \Lambda Annotatio	ns
3≡ Material <	not specified>
	inoc spocinious
Fidite1	
Plane2	
Plane3	
📜 🛄 Origin 🦵	
Base-R	🖌 1 😤 🔊
	Unsuppress
E Ribs Ex	
CirPatte	
E Cut-Ext	Invert Selection
<	astura (CirDattorn1)
Fi	eacure (CirPattern1)

Mo

- 4 Esaminare lo studio 2.
 - Esaminare lo studio 2. Il materiale e le informazioni carico/ vincolo dello studio 1 sono state copiate nello studio 2. Ma dato che la geometria è cambiata è necessario ricreare la mesh del modello ed eseguire una nuova analisi.

- 5 Creare una mesh congruente.
 - Espandere Contatto del componente (Component Contact) nell'albero dello studio 2.
 - Fare clic con il pulsante destro del mouse su Contatto globale (-Unito) (Global Contact -Bonded-).
 - Fare clic su Modifica definizione (Edit Definition). Si visualizza il PropertyManager di Contatto del componente (Component Contact).
 - Fare clic su **Mesh congruente (Compatible mesh)** nella casella Opzioni (Options). Accettare le impostazioni predefinite.
 - Fare clic su **OK** *I* nel PropertyManager Contatto del componente (Component Contact).

- 6 Creare la mesh del modello.
 - Fare clic sulla freccia del menu a discesa Esegui (Run) nella scheda Simulation del CommandManager.
 - Fare clic su Crea mesh (Create Mesh)
 [®]
 - Fare clic su OK quando appare il messaggio
 "La rimeshatura cancellerà i risultati per lo studio:
 Studio 2 (Remeshing will delete the results for study:
 Study 2)". Si visualizza il PropertyManager di Mesh
 con i valori suggeriti per Dimensione globale (Global
 Size) e Tolleranza (Tolerance).
- 15 lun Results Deformed Compa Result Advisor + Run Run Design Scenarios 2 Create Mesh Run All Studies Simulation Remeshing will delete the results for study: Study 2. 1 OK Cancel

- 7 Avviare la procedura di mesh.
 - Selezionare la casella Parametri della mesh (Mesh Parameters). Visualizzare le opzioni.
 - Selezionare la casella Esegui (risolvi) l'analisi (Run (solve) the analysis).
 - Fare clic su OK end PropertyManager di Mesh. La generazione della mesh ha inizio e si apre la finestra Progresso della mesh (Mesh Progress). Visualizzare i risultati nell'area grafica.

SolidWorks Simulation

- 8 Visualizzare la cartella Risultati (Results).
 - Espandere la cartella Risultati (Results).
- 9 Visualizzare il grafico della sollecitazione von Mises.
 - Fare doppio clic su Sollecitazione1 (-von Mises-) (Stress1 -von Mises-). Appare il grafico della sollecitazione von Mises. Visualizzare le opzioni.
 - Fare clic su OK elements nel PropertyManager di Grafico di sollecitazione (Stress Plot).

- 10 Visualizzare il fattore di sicurezza.
 - Fare doppio clic su Fattore di sicurezza1 (-Sollecitazione massima von Mises) (Factor of Safety1 -Max von Mises Stress-).
 - Ruotare il modello per visualizzare la superficie blu. L'area blu indica un FOS maggiore di 1.

Nota: Il FOS minimo è ora 1,02.

- 🛃 External Loads Heressure-1 (:1500 psi:) Mesh + EReport 😑 📴 Results Stress1 (-vonMises-) 💦 Displacement1 (-Res disp-) 隆 Strain1 (-Equivalent-) Factor of Safety1 (-Max von Mises Stress-) Min: 1.02 🧐 👕 🌒 LBV_ASSY (Simulation_Original_Design<<Simulation</p> Sensors 🗄 🤯 Design Binder Annotation: 😨 🚂 Lights, Cameras and Scene 🔆 Front 🚫 Top 🚫 Right 1, Origin % (-) Support Tube<1> (COSMOS (f) FLOAT4s<1> (f) View Port, Acrylic 150n 🛓 % (f) CH End Cap - 300m STBD-no tab-revf<1> (l 🗞 (-) ML304-B<1 (-) ML303-B<1> (-) Backpln1 <1 > (Default) √ (-) Aft Floatation <1 > (Default) 🔏 (-) Float-Plastic Frame<3> (Default) (-) Float-Plastic Frame <1 > (Default) 🔏 (-) Bumpe 🖏 (-) Bumpe 芦 🧐 🎇 🚱 🎝 🖄 🕼 🖆 😘 (-) Handle ۹. 🕘 -Hide components CA (-) CH E + MateGrou 🔭 Invert Selection 🗄 🚺 Report E Results 💕 Stress1 (-vonMises-) 階 Displacement1 (-Res disp-) 💕 Strain1 (-Equivalent-) Factor of Safety1 (-Max von Mises Stress-
- Mn: 1.02

- 11 Confrontare lo studio 2 con lo studio 1.
 - Fare clic sulla vista Isometric (Isometrica) nella barra degli strumenti Vista con preavviso (Heads-up View).
 - Fare clic su (f) View Port nel FeatureManager.
 - Tenere premuto il tasto **CTRL**.
 - Fare clic sul secondo componente CH End Cap -300mm. Entrambi i componenti sono selezionati.
 - Rilasciare il tasto **CTRL**.
 - Fare clic con il pulsante destro del mouse su

Nascondi componenti (Hide components) & nella barra degli strumenti contestuale.

- Fare doppio clic su Fattore di sicurezza1 (-Sollecitazione massima von Mises) (Factor of Safety1 -Max von Mises Stress-).
- Fare clic su OK nel PropertyManager. I due componenti sono nascosti nell'area grafica.
 Visualizzare il componente CH End Cap singolo.
- **Ruotare** il modello e visualizzare i risultati.

- Fare clic su Confronta risultati (Compare Results) nella scheda Simulation del CommandManager. Si visualizza il PropertyManager di Confronta risultati (Compare Results). Lo studio 1 e lo studio 2 sono selezionati.
- Fare clic sulla casella Seleziona manualmente risultati da visualizzare (Manually select results to view).
- Deselezionare Spostamento1 (Displacement1) e Deformazione1 (Strain1) sotto Studio 1 (Study 1).
- Selezionare Sollecitazione1 (Stress1) e Fattore di sicurezza1 (Factor of Safety1) sotto Studio 1 (Study 1).
- Selezionare Sollecitazione1 (Stress1) e Fattore di sicurezza1 (Factor of Safety1) sotto Studio 2 (Study 1).
- Fare clic su **OK** *I* nel PropertyManager di Confronta risultati (Compare Results). Visualizzare l'area grafica. Sono visualizzati i due studi.

	🕞 Design Insig	ht
Compare	Plot Tools	*
Results	📴 Report	
ion		
Comp	are Results	

- Fare clic sul pulsante Chiudi il confronto (Exit Compare) nella finestra di dialogo Confronta risultati (Compare Results). Lo studio 2 appare nell'area grafica.
- Fare doppio clic su Sollecitazione1
 (-von Mises-) (Stress1 -von Mises-) nella cartella Risultati (Results). Visualizzare l'area grafica.
- Fare clic sulla scheda Modello (Model) nella porzione inferiore dell'area grafica per tornare a SolidWorks e visualizzare l'assieme nel FeatureManager.
- Fare clic su (f) View Port nel FeatureManager.
- Tenere premuto il tasto CTRL.
- Fare clic sul secondo componente CH End Cap - 300mm. Entrambi i componenti sono selezionati.
- Rilasciare il tasto CTRL.
- Fare clic con il pulsante destro del mouse su Mostra componenti (Show

components) en lla barra degli strumenti contestuale. I componenti sono visualizzati nell'area grafica.

12 Tornare allo studio 1.

- Fare clic sulla scheda Studio 1 (Study 2) in fondo all'area grafica. Si visualizza lo studio 1.
- Fare doppio clic su Sollecitazione1 (-von Mises-) (Stress1 -von Mises-) nella cartella Risultati (Results). Visualizzare l'area grafica.
- Fare clic su **OK** ✓ nel PropertyManager.
- Fare clic su Confronta risultati (Compare Results) nella scheda Simulation del CommandManager. Si visualizza il PropertyManager di Confronta risultati (Compare Results).
- Fare clic sulla casella Seleziona manualmente risultati da visualizzare (Manually select results to view).
- Deselezionare Spostamento1 (Displacement1) e Deformazione1 (Strain1) sotto Studio 1 (Study 1).
- Selezionare Sollecitazione1 (Stress1) e Fattore di sicurezza1 (Factor of Safety1) sotto Studio 2 (Study 2).
- Fare clic su OK nel PropertyManager di Confronta risultati (Compare Results). Visualizzare l'area grafica. Sono visualizzati i due studi.

■ Fare clic sul pulsante Chiudi il confronto (Exit Compare) nella finestra di dialogo Confronta risultati (Compare Results). Lo studio 1 appare nell'area grafica.

- 13 Salvare e chiudere il modello.
 - Fare clic su Save (Salva) 🔙.
 - Fare clic su File, Chiudi (Close) nella barra dei menu.

Nota: L'intento di progetto è completato. Le nervature strutturali di EndCap hanno prodotto un FOS maggiore di 1.

Conclusione di SolidWorks Simulation

Durante questa breve sessione d'uso di SolidWorks Simulation, sono stati introdotti seppur in modo succinto i principali concetti dell'analisi statica. Completamente integrato nel software di progettazione meccanica 3D SolidWorks, SolidWorks Simulation consente di riflettere automaticamente tutte le modifiche progettuali e di aumentare la produttività grazie all'uso di comandi e funzioni già conosciuti in SolidWorks.

Confrontate facilmente e velocemente varie alternative progettuali. SolidWorks Simulation consente di studiare le varie configurazioni di un progetto creato con SolidWorks e scegliere la soluzione progettuale ottimale per la produzione.

Esaminate le interazioni tra i diversi componenti di un assieme. SolidWorks Simulation offre potenti strumenti per studiare e ottimizzare gli assiemi.

Simulate le condizioni del mondo reale. SolidWorks Simulation offre molti tipi di carichi e vincoli e il contatto tra parti per rappresentare situazioni reali; essi hanno carattere associativo con la geometria e si aggiornano automaticamente in base alle modifiche apportate al progetto.

Automatizzate le operazioni di analisi. SolidWorks Simulation mette a disposizione diversi strumenti di automazione per semplificare l'analisi e ottimizzare il lavoro.

Interpretate i risultati di analisi mediante strumenti di visualizzazione potenti ed intuitivi. Al termine dell'analisi, gli strumenti di visualizzazione dei risultati in SolidWorks Simulation permettono di studiare la prestazione dei modelli.

Collaborate e condividete i risultati dell'analisi. SolidWorks Simulation favorisce la collaborazione e la condivisione dei risultati con chiunque sia coinvolto nel processo di sviluppo prodotti.

SolidWorks Simulation Professional

Completando questo capitolo si acquisirà dimestichezza con le potenti funzioni di SolidWorks[®] Simulation Professional, tra cui:

- I vantaggi dell'analisi termica, del test di caduta, dell'ottimizzazione e dell'analisi di fatica.
- La facilità d'uso di SolidWorks[®] Simulation Professional per esplorare le iterazioni progettuali mediante il Tracker di tendenza (Trend Tracker).
- Le fasi per eseguire l'analisi preliminare di un progetto.
- L'integrazione tra SolidWorks[®] Simulation Professional e SolidWorks.
- I risultati dei risparmi sui costi per aver evitato cedimenti dei prodotti e aver eliminato il ricorso a prototipi.
- La capacità di documentare automaticamente i risultati dell'analisi.
- Il metodo per aggiornare l'assieme sulla base dei risultati dell'analisi.

SolidWorks Simulation Professional

Nella prima parte dell'analisi SolidWorks Simulation è stato utilizzato per eseguire due tipi di analisi statica sull'assieme Housing. Ora vedremo come utilizzare le applicazioni di SolidWorks Simulation Professional per approfondire l'esame. SolidWorks Simulation Professional offre tutte le funzionalità di SolidWorks Simulation e in più altre applicazioni per l'analisi. SolidWorks Simulation Professional include:

- Analisi statica di parti e assiemi
- Simulazione di un test di caduta
- Analisi della frequenza e del carico di punta
- Analisi di fatica
- Prestazioni di ottimizzazione
- Analisi dei recipienti di pressione
- Analisi termica
- Tracker di tendenza per documentare le iterazioni progettuali

In questa seconda parte dell'analisi, si eseguiranno gli studi seguenti:

- Analisi termica per determinare la dissipazione del calore prodotto da EndCap quando circondato da acqua marina.
- Simulazione del test di caduta di Housing da un'altezza di 4 piedi.
- Ottimizzazione per trovare la combinazione migliore di spessore per EndCap e delle nervature per ridurre la massa.
- Analisi della fatica su 3 Finger Jaw.

EndCap

Housing

EndCap con nervature

3 Finger Jaw

Analisi con Tracker di tendenza

Completando questo capitolo si acquisirà dimestichezza con le potenti funzioni di analisi della tendenza in SolidWorks Simulation Professional.

- L'analisi di tendenza consente di tener traccia delle modifiche apportate a un progetto, in maniera sistematica.
- Agevola il confronto delle varie modifiche progettuali e la comprensione di come e perché queste modifiche sono migliori o peggiori rispetto al progetto precedente.
- Infine, genera automaticamente la documentazione completa delle modifiche in tutto l'arco del ciclo di progettazione.

Inizieremo eseguendo l'analisi di tendenza sui componenti dell'alloggiamento dell'assieme SeaBotix LBV150. Questo è lo stesso assieme analizzato prima di utilizzare l'analisi statica in SolidWorks Simulation.

- 1 Aprire l'assieme Housing_Assy.
 - Fare clic su Apri (Open) 🖄 nella barra dei menu.
 - Fare doppio clic sull'assieme LBV_Assy nella cartella SeaBotix\SolidWorks Simulation Professional\TrendTracker. LBV_Assy si apre.
- **Nota:** Visualizzare la scheda Studio di tendenza (Trend Study) nella porzione inferiore dell'area grafica se SolidWorks Simulation è attivo.

Customize. Add-Ins...t

📃 Options

ing Assy

- 2 Se necessario, attivare SolidWorks Simulation.
 - Fare clic sulla freccia del menu a discesa Opzioni
 (Options) I nella barra dei menu.
 - Fare clic su Aggiunte (Add-Ins). Si visualizza la finestra di dialogo Aggiunte (Add-Ins).
 - Selezionare la casella SolidWorks Simulation.
 - Fare clic su **OK** nella finestre di dialogo Aggiunte (Add-Ins).
- **Nota:** Non è necessario attivare SolidWorks Simulation se questo è già stato aggiunto.
- **Nota:** Per visualizzare il CommandManager di Simulation Advisor, selezionare la casella Esegui Simulation Advisor (Run Simulation Advisor) tra le opzioni di sistema.
 - 3 Visualizzare lo studio di tendenza.
 - Fare clic sulla scheda Studio di tendenza (Trend Study) nel modo illustrato. Si visualizza lo studio di tendenza.

Run Simulation Advisor from CommandManager (You need to restart SolidWorks for the change to take effect)

- 4 Eseguire l'analisi sullo studio.
 - Fare clic su **Esegui (Run)** Nella scheda Simulation del CommandManager. L'analisi si esegue e vengono creati tre grafici di default.
- 5 Visualizzare la sollecitazione von Mises di EndCap.
 - Il grafico appare nell'area grafica. Fare doppio clic su Sollecitazione1 (-vonMises-) (Stress1 -vonMises-). Si visualizza il PropertyManager di Grafico di sollecitazione (Stress Plot). Visualizzare le opzioni disponibili.
 - Fare clic su **OK** *Inel PropertyManager di Grafico di sollecitazione (Stress Plot).*
 - Adattare il modello all'area grafica.
 - Premere il tasto f.

6

Suggerimento: Per applicare lo zoom indietro, premere il tasto z.

- 7 Nascondere i vincoli nell'area grafica.
 - Fare clic con il pulsante destro del mouse sulla cartella Vincoli (Fixtures).
 - Fare clic su Nascondi tutto (Hide All).
- 8 Nascondere i carichi esterni.
 - Fare clic con il pulsante destro del mouse sulla cartella Carichi esterni (External Loads).
 - Fare clic su Nascondi tutto (Hide All).
 - Fare clic sulla freccia del menu a discesa
 Strumenti del grafico (Plot Tools) nella scheda Simulation del CommandManager.
 - Fare clic su **Elenca selezioni (List Selected)** . Si visualizza il PropertyManager di Risultato sonda (Probe Results).
- Nota: La casella Sulle entità selezionate (On selected entities) è selezionata di default.
 - Ingrandire il **foro anteriore** di EndCap nel modo illustrato.

- Fare clic sul bordo del foro anteriore di EndCap. Nota: Il riscontro dell'icona rappresenta un bordo. Bordo<1> (Edge<1>) appare nella casella Risultati (Results).
- Selezionare il pulsante Aggiorna.
 Visualizzare i risultati.
- Fare clic su **OK** ✓ nel PropertyManager di Risultato sonda (Probe Results).
- 9 Adattare il modello all'area grafica.
 - Premere il tasto f.

7	Edge<1>@CH End Ca	p -
	Flip edge plot	
	Update	
Node	Value (N/mm^2 (MPa))	~
3380	454.971	1
232	374.271	
3383	543.479	
233	468,525	1
3375	441.477	
234	406.181	
3370	445.241	
235	375.782	×
100	100	

SolidWorks Simulation

0

Study

Advisor

2

SolidWorks Simulation Professional

Nota: Studio Advisor consiglia i tipi di studio ed i risultati previsti. Study Advisor assiste l'utente nella definizione dei sensori e crea gli studi automaticamente.

- 10 Aprire il Tracker di tendenza (Trend Tracker).
 - Fare clic con il pulsante destro del mouse su Studio di tendenza (Trend Study) (-Simulation_Origin_Design).
 - Fare clic su Tracker di tendenza (Trend Tracker). Si visualizza la cartella Tracker di tendenza (Trend Tracker).

- 11 Impostare una linea di base.
 - Fare clic con il pulsante destro del mouse sulla cartella Tracker di tendenza (Trend Tracker).
 - Fare clic su Imposta linea base (Set Baseline). Visualizzare le icone del grafico creato.
- Nota: L'analisi di sollecitazione corrente sarà utilizzata come linea di base per il confronto dei progetti futuri.

Inserire modifiche al progetto per rinforzare le parti EndCap. Visualizzare le differenze che hanno introdotto queste modifiche rispetto al progetto iniziale alla luce di: sollecitazione, spostament, ecc. utilizzando lo strumento Tracker di tendenza (Trend Tracker).

Tracker di tendenza consente di apportare modifiche al progetto senza creare altri studi o altre configurazioni.

Nella prossima sezione si definirà un sensore. L'utente definisce i sensori per monitorare le quantità dei risultati in posizioni specifiche, le proprietà della massa dei componenti o corpi, le interferenze tra i componenti per gli assiemi, e le dimensioni.

12 Aggiungere i sensori.

- Fare clic sulla scheda **Modello (Model)** in fondo all'area grafica.
- Fare clic con il pulsante destro del mouse sulla cartella Sensori (Sensors) dal FeatureManager dell'assieme.
- Fare clic su **Aggiungi sensore (Add Sensor)**. Si visualizza il PropertyManager di Sensore (Sensor).
- Selezionare Dati di Simulation (Simulation Data) come tipo di sensore dal menu a discesa.
- Selezionare N/m² come unità.
- Seleziona Massimo sulle entità selezionate (Max over Selected Entities) come criterio.
- Fare clic con il pulsante destro del mouse sulla casella
 Azzera selezioni (Clear Selections) nel modo illustrato.

- Fare clic sul bordo del foro anteriore di EndCap come illustrato. Nota: Il riscontro dell'icona rappresenta un bordo. Bordo<1> (Edge<1>) appare nella casella di selezione.
- Fare clic su **OK** ✓ nel PropertyManager di Sensore (Sensor).
- Espandere la cartella Sensore (Sensor) nel FeatureManager dell'assieme. Visualizzare le cartelle.
- 13 Tornare allo studio di tendenza.
 - Fare clic sulla scheda Studio di tendenza (Trend Study) in fondo all'area grafica.

S	Model iolidWorks Premium 2010
	8 »
BV_ASSY	(Simulation_Original_De
⊕ 🕢 D ⊕ 🛃 A ⊕ 🐼 Li	Add Sensor Notifications

- 14 Aggiungere un secondo grafico dei dati rintracciati.
 - Fare clic con il pulsante destro del mouse sulla cartella Tracker di tendenza (Linea base) (Trend Tracker -Baseline).
 - Fare clic su Aggiungi grafico dati rintracciati (Add Tracked Data Graph). Si visualizza il PropertyManager di Grafico dati rintracciati (Tracked Data Graph).
 - Selezionare Sollecitazione2 (Stress2) come tipo di sensore dal menu a discesa. Visualizzare le opzioni.
 - Fare clic su **OK** *I* nel PropertyManager di Grafico dati rintracciati (Tracked Data Graph). Si visualizza la cartella Sollecitazione2 (Stress2).

- Fare clic sulla scheda Modello (Model) in fondo all'area grafica. Si visualizza il FeatureManager dell'assieme.
- Espandere il primo CH End Cap 300m STBD dal FeatureManager, nel modo illustrato.
- Fare clic con il pulsante destro del mouse su RipetizioneCircolare1 (CirPattern1).
- Fare clic su **Riattiva (Unsuppress)** is nella barra degli strumenti contestuale. L'assieme Housing appare nell'area grafica con i componenti EndCap con le nervature.
- 16 Tornare allo studio di tendenza.
 - Fare clic sulla scheda Studio di tendenza (Trend Study) in fondo all'area grafica.

SolidWorks Premium 201

Analisi con Tracker di tendenza

17 Eseguire un'analisi.

- Fare clic su **Esegui (Run)** Mella scheda Simulation del CommandManager. Ultimata l'analisi, i grafici del Tracker di tendenza (Trend Tracker) si aggiornano.
- Visualizzare il grafico Sollecitazione1 (-vonMises-) (Stress1 -vonMises-).

- 18 Esaminare la massa totale della parte EndCap.
 - Fare doppio clic sulla cartella Massa1 (Mass1) nel modo illustrato. La massa totale della seconda iterazione è aumentata rispetto alla prima iterazione perché sono state aggiunte le nervature.
- **Nota:** Lo spessore aggiuntivo dovrebbe aumentare il FOS.
 - Chiudere il grafico.

- 19 Esaminare il grafico Sollecitazione1 (Stress1).
 - Fare doppio clic sulla cartella Sollecitazione1 (Stress1). Visualizzare i risultati.
- **Nota:** La sollecitazione massima von Mises del foro è diminuita a causa delle nervature aggiunte.
 - Chiudere il grafico.

20 Esaminare il journal tendenze.

- Fare doppio clic sulla cartella Journal tendenze (Trend Journal). Si visualizza il journal tendenze. Questo journal contiene tutti i dettagli sulle diverse iterazioni eseguite sul modello.
- Chiudere il journal tendenze uscendo da Microsoft Word.

Utilizzando il Tracker di tendenza (Trend Tracker), è anche possibile riportare il modello a un'iterazione intermedia senza dover salvare alcuna modifica concettuale. Il Tracker di tendenza (Trend Tracker) è inoltre integrato negli scenari progettuali di SolidWorks Simulation Professional per tenere traccia delle modifiche strutturali alle funzioni.

21 Salvare e chiudere il modello.

- Fare clic su Save (Salva) .
- Fare clic su File, Chiudi (Close) nella barra dei menu.

	Trend·Journal¶			
1				
File Name: 0	LBV_ASSY.SLDASM0			3
Study name:¤	Trend-Study©			3
Description:¤	a			*
Π				
Baseline¤	α			×
Time Completed: 🖸	Friday, October 02, 2009 7:40:12	AMO		x
Tracked Data:¤	a			x
1				
	Sourceo	Турео	Actual Valueo	Normalized Value
	Mass10	Model·Max [©]	4.05904•(kg)¤	100¤
	Stress1 · (VON: von Mises · Stress)	Model·Max0	543.479•(N/mm^2•(MPa))	100¤
	Displacement 1 (URES: Resultant Displacement)	Model·Max¤	4.43455•(mm)¤	100¤
	Stress2·(VON: von Mises Stress)©	Max•over•Selected•Entities	5.43479e+008·(N/m^2)¤	1000
		ſ		
Iteration 20	a			x
Time Completed: ©	Friday, October 02, 2009 7:51:41	·AMo		ĸ
Tracked Data:©	a			ĸ
ſ	10. 10.			
	Sourceo	Турео	Actual Valueo	Normalized Value
	Mass 10	Model·Max [©]	5.16175•(kg)¤	127¤
	Stress1.(VON: von Mises Stress)	Model·Max [©]	337.151.(N/mm^2.(MPa))	62a
	Displacement1 (URES: Resultant Displacement)	Model·Max [©]	4.42488•(mm)©	990
	Stress2·(VON: von Mises Stress)©	Max over Selected Entities	2.5485e+008·(N/m^2)¤	46a

Analisi termica

La prestazione del progetto può essere compromessa da una temperatura eccessiva o dal trasferimento di calore tra i componenti. SolidWorks Simulation Professional consente di eseguire l'analisi termica utilizzando i parametri seguenti:

- Conduzione, convezione e irraggiamento
- Analisi stazionaria e transitoria con carichi dipendenti dal tempo
- Materiali e carichi dipendenti dalla temperatura
- Temperatura, potenza termica e capacità termica
- Termostati per il feedback a circuito chiuso negli studi transitori
- Resistenza al contatto termico

Si ripeterà ora l'analisi del componente EndCap di Housing. Housing contiene la fotocamera e il sistema di illuminazione dell'assieme SeaBotix LBV150. L'analisi di EndCap determinerà la quantità di calore che si perde nell'acqua circostante. Ai fini di questo tutorial si presterà attenzione solo alla convezione naturale. Per semplificare il modello, la fotocamera e il sistema di illuminazione sono rappresentati come una sorgente di calore concentrata.

La finalità progettuale in questo caso vuole migliorare la distribuzione termica di EndCap. Si saprà se l'aggiunta delle nervature (massa) aiuterà a dissipare il calore generato da questa sorgente concentrata nell'acqua circostante.

Creare lo studio per l'analisi termica

- 1 Aprire la parte EndCap.
 - Fare clic su Apri (Open) 🖄 nella barra dei menu.
 - Fare doppio clic su EndCap nella cartella SeaBotix\SolidWorks Simulation Professional\ Thermal.
- **Nota:** Il tipo di file è Parte. EndCap appare nell'area grafica.

2 Creare uno studio termico.

■ Fare clic sulla scheda **Simulation** nel CommandManager.

	Study Adviso	Apply Material	Fixtures Advisor	Exter Loads	nal Conne	tions ctions	Run	Results Advisor	Deformed Result	Ca
	1			Ť	17		7	· · ·		
1000	Qn	5tudy Adviso	or	luate	DimXpe	rt O	ffice P	roducts	Simulati	on
H.	Q 1	New Study								_

- Fare clic sulla freccia del menu a discesa
 Advisor dello studio (Study Advisor) nella scheda Simulation.
- Fare clic su **Nuovo studio (New Study)** . Si visualizza il PropertyManager di Studio (Study).
- Immettere Studio termico 1 (Thermal-Study 1) come nome dello studio.
- Fare clic su **Termico (Thermal)** we come tipo.
- 3 Visualizzare lo studio.
 - Fare clic su **OK** *I* nel PropertyManager di Studio (Study).

Applicazione del materiale a EndCap.

- 1 Applicare il materiale a EndCap.
 - Fare clic su **EndCap** in Studio termico 1 (Thermal-Study 1) (-Default-).
 - Fare clic su **Applica materiale (Apply Material)** linella scheda Simulation del CommandManager. Si visualizza la finestra di dialogo Materiale (Material). Visualizzare le opzioni.
 - Fare clic su AISI 1020 nella cartella Acciaio (Steel).
 - Fare clic su Applica.
 - Fare clic su Chiudi (Close) nella finestra di dialogo Materiale (Material).

SolidWorks Materials	Properties Tables	& Curves A	ppearance Cr	ossHatch	Custom	Application Data
😑 🚼 Steel	- Matorial propertie					
3 1023 Carbon Steel Sheet (SS)	Materials in the	> default librar	ry can not be en	lited Your	must first	copy the material to
3 = 201 Annealed Stainless Steel (SS)	a custom library	to edit it.	, cannot be ca	icour rour	nase nise i	copy the indicide to
E A286 Iron Base Superalloy	Madel Truces	Luna e	la de varia de la composita	120	1	
AISI 1010 Steel, hot rolled bar	Model Type:	Linear E	lastic Isotropic	×		
AISI 1015 Steel, Cold Drawn (SS)	Units:	SI - N/m	n^2 (Pa)	~		
SE AISI 1020	Cabagoogu	Chaol			ī	
AIs 1020 Steel, Cold Rolled	category.	Steel				
E AISI 1035 Steel (55)	Name:	AISI 10	20		1	
AISI 1045 Steel, cold drawn	Default failure	D.C	All and Chinese	Tus	1	
3 AISI 304	criterion:	Max vu	n Mises otress			
AISI 316 Annealed Stainless Steel Bar (55	Description:					
AISI 316 Stainless Steel Sheet (SS)						
AISI 321 Annealed Stainless Steel (SS)	Source:					
AISI 347 Annealed Stainless Steel (SS)			L	lu n		
Steel, annealed at 865C	Property		Value	Units		
AISI 4130 Steel, normalized at 870C	Elastic Modulus		2000000000000	N/m^2		
SE AISI 4340 Steel, annealed	Shear Modulus		77000000000	N/m^2		
AISI 4340 Steel, normalized	Density		7900	ka/m^3		
AISI Type 316L stainless steel	Tensile Strength		420507000	N/m^2		
AISI Type A2 Tool Steel	Compressive Stre	ngth in X		N/m^2		
Alloy Steel	Yield Strength		351571000	N/m^2		
Alloy Steel (SS)	Thermal Expansion	Coefficient	0.000015	ĸ		
= ASTM A36 Steel	Thermal Conductiv	ity	47	WW(m·K)		
Cast Alloy Steel	Specific Heat		420	J/(kg·K)		
	Material Damping F	tatio		N/A		

Nota: Il segno di spunta verde <u>sulla cartella Parti (Parts) indica che il</u> materiale è assegnato alle parti.

Carichi termici e condizioni al contorno

I carichi e vincoli termici sono disponibili solamente per gli studi termici. Per gli studi termici stazionari con una fonte di calore, definire un meccanismo per la dissipazione del calore. Altrimenti l'analisi si arresta visto che le temperature aumentano senza sbalzo. Gli studi termici transitori si eseguono per un periodo di tempo relativamente breve e quindi non richiedono il meccanismo di dissipazione del calore.

L'assunto di partenza è che la convezione di EndCap sia naturale. Si applicherà un carico di potenza di 600 watt al sistema per simulare il carico termico generato dalla fotocamera e dal sistema di illuminazione.

I seguenti tipi di carichi e vincoli sono disponibili per gli studi termici:

Tipo de carga	Entidades geométricas	Tipo de geometría de referencia	Entrada requerida
Temperatura	Vértices, aristas, caras y componentes	N/D	Unidad y valor de temperatura.
Convección	Caras	N/D	Coeficiente de película y temperatura ambiente en las unidades deseadas.
Radiación	Caras	N/D	Unidad y valor de la temperatura circundante, emisividad y factor de vista para radiación de superficie a ambiente.
Flujo de calor	Las caras y un vértice opcional para la ubicación del <u>termostato</u> de estudios transitorios	N/D	Unidad y valor del flujo de calor (energía térmica/área de unidad), Intervalo de temperatura para termostato opcional para estudios transitorios.
Energía térmica	Vértices, aristas, caras y componentes, además de un vértice opcional para ubicación de <u>termostato</u> para estudios transitorios	N/D	Unidad y valor de la energía térmica. El valor especificado se aplica a cada entidad seleccionada. Intervalo de temperatura para termostato opcional para estudios transitorios.

Applicazione di un carico termico

- 1 Applicare un carico termico.
 - Fare clic sulla freccia del menu a discesa
 Carichi termici (Thermal Loads) nella scheda Simulation del CommandManager.
 - Fare clic su Capacità termica (Heat Power)
 Si visualizza il PropertyManager di Capacità termica (Heat Power).
- 2 Selezionare la faccia.
 - Ingrandire la faccia del foro centrale di EndCap.
 - Fare clic sulla faccia interna del foro centrale di EndCap nel modo illustrato. Faccia<1> (Face<1>) si visualizza nella casella Entità selezionate (Selected Entities). Notare il simbolo di riscontro sull'icona corrispondente a una faccia.

3 Immettere la capacità termica.

- Selezionare SI dal menu a discesa Unità (Units).
- Immettere 600 watt nella casella Capacità termica (Heat Power).
- **Nota:** 600 watt è una stima della quantità totale di potenza generata dalla fotocamera e dal sistema di illuminazione dell'assieme.
 - 4 Applicare i valori.

Fare clic su **OK** rel PropertyManager di Capacità termica (Heat Power). Si visualizza Capacità termica-1 (Heat Power-1).

Applicazione della convezione

- 1 Applicare la convezione.
 - Fare clic sulla freccia del menu a discesa Carichi termici (Thermal Loads) nella scheda Simulation del CommandManager.
 - Fare clic su Convezione (Convection) .
 Apparirà il PropertyManager di Convezione (Convection).
- 2 Selezionare le facce esposte.
 - Ruota EndCap con il pulsante centrale del mouse nel modo illustrato.
 - Fare clic sulla faccia esterna di EndCap. Faccia<1> (Face<1>) appare nella casella Facce per convezione (Faces for Convection).
- 3 Selezionare le altre tre facce esterne esposte.
 - Fare clic sulle altre tre facce esterne di EndCap. Faccia<2> (Face<2>), Faccia<3> (Face<3>) e Faccia<4> (Face<4>) appaiono nella casella Facce per convezione (Faces for Convection). Ruotare il modello per selezionare la faccia<4>.
- Nota: Utilizzare lo strumento Zoom area (Zoom to Area) della barra degli strumenti Vista con preavviso (Heads-up View) per selezionare le facce corrette.

- 4 Impostare le unità e il valore.
 - Seleziona Inglese (IPS) (English IPS) nel menu a discesa Unità (Units).
 - Immettere **0,22** nella casella Coefficiente di convezione (Convection Coefficient).
 - Immettere **50** nella casella Temperatura dell'ambiente circostante (Bulk Ambient Temperature).
- **Nota:** I dati immessi simulano le condizioni dell'acqua marina ad una piattaforma operativa di 3.400 piedi.

- Fare clic su OK nel PropertyManager di Convezione (Convection). Si visualizza Convezione-1 (Convection-1).
- 6 Adattare il modello all'area grafica.
 - Premere il tasto **f**.
- **Nota:** SolidWorks Simulation Professional applica la convezione alle quattro facce esposte selezionate e crea una sola entità. I simboli di convezione appaiono sulle quattro facce esterne selezionate.

Creazione di una mesh ed esecuzione dell'analisi

- 1 Creare una mesh ed eseguire l'analisi.
 - Fare clic sulla freccia del menu a discesa Esegui (Run) nella scheda Simulation del CommandManager.
 - Fare clic su Crea mesh (Create Mesh)
 Si visualizza il PropertyManager di Mesh con i valori suggeriti per Dimensione globale (Global Size) e Tolleranza (Tolerance).
 - Selezionare la casella Esegui (risolvi)
 l'analisi (Run (solve) the analysis).
- 2 Avviare la procedura di mesh.

Fare clic su **OK** rel PropertyManager di Mesh. La mesh creata e il grafico Termico1 (Thermal1) appaiono a schermo.

Thermal-Study 1 (-Default-)

Heat Power-1 (:Per item: 600 W:) Convection-1 (:0.22 BTU/(s-in^2F):

Thermal1 (-Temperature-)

Heat Power-1 (:Per item: 600 W:)

Hide

Animate...

TEMP: Temperature

Fahrenheit Kelvin Fahrenheit Edit Definition...

Section Clipping..

🖰 EndCap (-AISI 1020-)

Connections

🍇 Mesh **G Results**

월 Thermal Loads

🔱 Thermal-Study 1 (-Default-) Thermal-Study 1 (-Default-)

Connections

🐝 Mesh

E Results

📢 Therr

😼 Thermal Plo

× ->=

Display

E

Adva Celsius

😚 Thermal Loads

- 3 Visualizzare il grafico termico.
 - Fare doppio clic su Termico1 (-Temperatura-) (Thermal-1 -Temperature-). Si visualizza il PropertyManager di Grafico termico (Thermal Plot). Visualizzare le opzioni.
 - Fare clic su **OK** *Inel* PropertyManager di Grafico termico (Thermal Plot).
 - Fare clic con il pulsante destro del mouse su **Termico1** (-Temperatura-) (Thermal1 - Temperature-).
 - Fare clic su Modifica definizione (Edit Definition). Si visualizza il PropertyManager di Grafico termico (Thermal Plot).
- 4 Modificare le unità di temperatura.
 - Selezionare Fahrenheit dal menu a discesa Temperatura (Temperature).
 - Fare clic su OK nel PropertyManager di Grafico termico (Thermal Plot). Il grafico termico si visualizza in gradi Fahrenheit.
 - **Ruotare** il modello con il pulsante centrale del mouse per visualizzare il profilo di temperatura.

SolidWorks Simulation

Applicazione dello strumento Sonda (Probe)

- 1 Applicar lo strumento Sonda (Probe).
 - Fare clic sulla freccia del menu a discesa Strumenti del grafico (Plot Tools) nella scheda Simulation del CommandManager.
 - Fare clic su Sonda (Probe) . Apparirà il PropertyManager di Sonda (Probe). Questo strumento consente di elencare la temperatura in una posizione specifica del modello.
 - Ingrandire la **faccia interna** nel modo illustrato.
 - Fare clic sui cinque punti dall'alto in basso, nel modo illustrato. La casella di riepilogo a discesa Sonda (Probe) visualizza le temperature e le coordinate X, Y e Z dei vertici selezionati nel sistema di coordinate globale.

Nota: I risultati dipendono dai punti selezionati su EndCap.

- 2 Visualizzare e chiudere il grafico sonda.
 - Fare clic su Grafico A. La finestra Risultato sonda (Probe Result) si apre con un grafico delle temperature ai vertici selezionati, a confronto con i numeri di nodo dei vertici. Visualizzare il grafico.
 - Chiudere il grafico.
 - Fare clic su OK nel PropertyManager di Risultato sonda (Probe Result).
- 3 Adattare il modello all'area grafica.
 - Premere il tasto **f**.

Modificare il progetto

Nel primo studio le temperature di 673°F all'incirca sul foro centrale di EndCap erano state calcolate in base alle informazioni fornite in merito ai carichi.

In questa sezione, alla parte EndCap vengono aggiunte le nervature. Le nervature contribuiranno a dissipare il calore generato dalla fotocamera e dal sistema di illuminazione di EndCap nell'acqua circostante.

Senza nervature

Saranno eseguite le operazioni seguenti:

- Riattivare la funzione di nervatura nella parte EndCap.
- Copiare ed incollare il materiale e le informazioni su carichi/vincoli dal primo al secondo studio.
- Creare la mesh ed eseguire una nuova analisi.
- Visualizzare i risultati del secondo studio.
- Confrontare il primo al secondo studio.

Con nervature

Duplica

Creare la seconda analisi

- 1 Creare lo studio termico 2.
 - Fare clic con il pulsante destro del mouse sulla scheda Studio termico 1 (Thermal-Study 1) nella porzione inferiore dell'area grafica.
 - Fare clic su Duplica (Duplicate).
 Si visualizza la finestra di dialogo Definisci nome studio (Define Study Name).
 - Immettere Studio termico 2 (Thermal-Study 2) come nome del nuovo studio.

- Fare clic su OK nella finestra di dialogo Definisci nome studio (Define Study Name). Si visualizza Studio termico 2 (Thermal-Study 2).
- 2 Aggiungere le nervature alla parte EndCap.
 - Fare clic sulla scheda Modello (Model) in fondo all'area grafica.
 - Fare clic con il pulsante destro del mouse su RipetizioneCircolare1 (CirPattern1) nel FeatureManager.
 - Fare clic su Riattiva (Unsuppress) nella barra degli strumenti contestuale. Nell'area grafica si visualizza la parte EndCap con le nervature.

3 Tornare allo studio termico 2.

Fare clic sulla scheda Studio termico 2 (Thermal-Study
 2) in fondo all'area grafica.

- 4 Esaminare lo studio termico 2.
 - Esaminare lo studio termico 2. Le informazioni termiche sono state copiate dal primo al secondo studio.
- 5 Analizzare il modello.
 - Fare clic su Esegui (Run) inella scheda Simulation del CommandManager. Si visualizza Termico1 (-Temperatura-) (Thermal1 - Temperature-). Visualizzare il grafico nell'area grafica.

Nota: L'aggiunta delle nervature ha prodotto una temperatura compresa tra 50 e 329°F.

- 6 Confrontare lo studio 2 con lo studio 1.
 - Fare clic su Confronta risultati (Compare Results) and nella scheda Simulation del CommandManager. Si visualizza il PropertyManager di Confronta risultati (Compare Results). Lo studio 1 e lo studio 2 sono selezionati.
 - Fare clic sulla casella Confronta risultato selezionato con gli altri studi (Compare selected result across studies). Nota: La casella Usa impostazioni da questo grafico per tutte le rappresentazioni dello stesso tipo (Use settings from this plot for plots of the same type) è selezionata.
 - Fare clic su OK Inel PropertyManager di Confronta risultati (Compare Results). Visualizzare l'area grafica. Sono visualizzati i due studi.

Compare Results	Plot Tools	•	Cesign Study
	ation Dare Results		ido bu cido

- 7 Tornare allo studio 2.
 - Fare clic sul pulsante Chiudi il confronto (Exit Compare). Visualizzare lo studio termico 2.
- 8 Salvare e chiudere il modello.
 - Fare clic su Save (Salva) .
 - Fare clic su Finestra (Window), Chiudi tutto (Close All) nella barra dei menu.
- **Nota:** La dissipazione termica di EndCap è stata migliorata grazie all'aggiunta delle nervature. Le nervature hanno aggiunto massa che a sua volta fornisce un percorso di carico termico migliore all'intera parte.

Wind	ow Help 🖉 🗋 🗸 💕 -
	Viewport •
唱	New Window
	Cascade
	Tile Horizontally
	Tile Vertically Shift+T
	Arrange Icons
	Close All

Analisi del test di caduta

Gli studi del test di caduta esaminano l'effetto provocato dall'impatto di una parte o un assieme con una superficie planare rigida o flessibile. La caduta di un oggetto sul pavimento è l'applicazione tipica da cui deriva il nome del test. Il programma calcola automaticamente i carichi di impatto e gravità. Non sono consentiti altri carichi o vincoli. Il programma risolve un problema dinamico come funzione del tempo.

Il progetto cederà?

Lo studio non risponde a questa domanda automaticamente. Può prevedere la separazione dei componenti causata dall'impatto. È possibile utilizzare i risultati per valutare la possibilità che si verifichi un evento di caduta. Ad esempio, è possibile utilizzare le sollecitazioni massime per prevedere la rottura del materiale e le forze di contatto per prevedere la separazione dei componenti.

Eseguire il test di caduta sull'assieme Housing.

Creazione di uno studio del test di caduta

- 1 Aprire il componente Housing.
 - Fare clic su Apri (Open) 🖄 nella barra dei menu.
 - Fare doppio clic sull'assieme Housing_Assy nella cartella SeaBotix\SolidWorks Simulation Professional\Drop_Test. Housing appare nell'area grafica.

Look in: ն) Drop_Test 💌	G	Ð	📂 🛄 •
🚞 Finished				
8 Housing_A	Assy.SLDASM			
F 1	(Director opening		-	
rile name:	.SLDASM		~	Upen -
Files of type:	Assembly (*.asm;*.sldasm)		~	Cancel
Description:	<none></none>			
	Uuick view			References

2 Creare uno studio del test di caduta.

- Fare clic sulla freccia del menu a discesa Advisor dello studio (Study Advisor) nella scheda Simulation del CommandManager.
- Fare clic su Nuovo studio (New Study) visualizza il PropertyManager di Studio (Study).
- Immettere Studio Test di caduta 1 (Droptest Study 1) come nome dello studio.
- Fare clic sul pulsante Test di caduta (Drop Test) < per Tipo (Type).
- 3 Visualizzare lo studio.

Fare clic su **OK** *I* nel PropertyManager di Studio (Study). Si visualizza Studio Test di caduta 1 (Droptest Study 1) (-Default-).

Туре

Static

Thermal

Drop Test

Nonlinear

0

Study

Advisor

15

9.9

- 4 Impostare lo studio del test di caduta.
 - Fare clic con il pulsante destro del mouse sulla cartella Impostazione (Setup).
 - Fare clic su Definisci/Modifica (Define/Edit). Si visualizza il PropertyManager di Impostazione test della caduta (Drop Test Setup).

- Selezionare la casella Altezza di caduta (Drop height).
- Selezionare ft dal menu a discesa Unità (Units).
- Immettere 4 nella casella Altezza di caduta dal centroide (Drop height from centroid).
- Fare clic sulla casella Gravità (Gravity).
- Espandere **Housing_Assy** per renderlo mobile nell'area grafica.
- Espandere il secondo componente CH End Cap nel modo illustrato.
- Fare clic sul gruppo di selezione del piano di gravità.

Fare clic su Piano3 (Plane3) nel FeatureManager mobile. Nota: Fare clic sul secondo componente CH EndCap. Piano 3 (Plane 3) appare nella casella Gravità (Gravity).

- Selezionare m/sec² per le unità del modulo di gravità.
- Fare clic sulla casella Normale rispetto alla gravità (Normal to gravity).
- Fare clic sulla casella Destinazione rigida (Rigid target) come Rigidità di destinazione (Target Stiffness).
- 5 Visualizzare lo studio.
 - Fare clic su OK nel PropertyManager di Impostazione test della caduta (Drop Test Setup). L'impostazione viene visualizzata con un segno di spunta.
 - Ruotare il modello con il pulsante centrale del mouse. Visualizzare la freccia direzionale, rivolta verso il basso.

Creazione della mesh del modello

- 1 Creare la mesh del modello.
 - Fare clic sulla freccia del menu a discesa **Esegui (Run)** nella scheda Simulation del CommandManager.
 - Fare clic su Crea mesh (Create Mesh) .
 ForpertyManager di Mesh (Mesh).
 - Espandere la finestra di dialogo **Avanzato (Advanced)**.
 - Selezionare la casella Mesh qualità bozza (Draft Quality Mesh).
- **Nota:** Un fattore di mesh grezzo produrrà la mesh in tempi minori. I risultati dipendono dal fattore di mesh selezionato.
 - 2 Avviare la procedura di mesh e di analisi.
 - Fare clic su **OK** ✓ nel PropertyManager di Mesh. La generazione della mesh ha inizio e si apre la finestra Progresso della mesh (Mesh Progress). Al termine, accanto alla cartella Mesh appare un segno di spunta.

SolidWorks Simulation

Esecuzione dell'analisi

- 1 Eseguire l'analisi.
 - Fare clic su **Esegui (Run)** ■ Si visualizza il PropertyManager di Esegui (Run). L'analisi si esegue e vengono creati i grafici di default.
 - Fare clic su No nella finestra di dialogo Analisi lineare (Linear Analysis) per mantenere le selezioni.

Nota: L'esecuzione richiederà circa 15 secondi.

- 2 Esaminare la cartella Risultati (Results).
 - Espandere la cartella Risultati (Results). Questa cartella contiene tre grafici: Sollecitazione, Spostamento e Deformazione. Visualizzare il grafico Sollecitazione1 (-vonMises-) (Stress1 vonMises-) nell'area grafica.

- 3 Impostare il fattore di scala e visualizzare il grafico von Mises.
 - Fare doppio clic su Sollecitazione1 (-vonMises-) (Stress1 -vonMises-). Si visualizza il PropertyManager di Grafico di sollecitazione (Stress Plot). Visualizzare le opzioni.
 - Fare clic su **OK** *I* nel PropertyManager di Grafico di sollecitazione (Stress Plot).
 - Fare clic con il pulsante destro del mouse su Sollecitazione1 (-vonMises-) (Stress1 -vonMises-).
 - Fare clic su Modifica definizione (Edit Definition). Si visualizza il PropertyManager di Grafico di sollecitazione (Stress Plot).
 - Fare clic su Automatico (Automatic) nella casella Sagoma deformata (Deformed Shape). Accettare le impostazioni predefinite.
 - Fare clic su OK nel PropertyManager di Grafico di sollecitazione (Stress Plot). Visualizzare il grafico nell'area grafica.

Animazione del grafico

- 1 Animare il grafico.
 - Fare clic sulla freccia del menu a discesa Strumenti del grafico (Plot Tools) nella scheda Simulation del CommandManager.
 - Fare clic su Animare (Animate) ▶. Si visualizza il PropertyManager di Animazione (Animation).
 - Fare clic su **Esegui (Play)** per avviare l'animazione. Visualizzare l'animazione nell'area grafica.
 - Fare clic su **Ferma (Stop)** per arrestare l'animazione.

■ Fare clic su **OK** *I* nel PropertyManager di Animazione (Animation).

Nota: È possibile salvare l'animazione del grafico nel formato AVI.

- 2 Visualizzare il grafico di spostamento.
 - Fare doppio clic su **Spostamento1 (-Disp res-) (Displacement1 -Res disp-)**. Visualizzare il grafico nell'area grafica.

- 3 Creare il grafico dei tempi.
 - Fare clic con il pulsante destro del mouse sulla cartella Risultati (Results).
 - Fare clic su Crea grafico temporale personale (Define Time History Plot). Si visualizza il PropertyManager di Grafico dei tempi (Time History Graph).

Time History Graph

Predefined locations

~

×

Response

All nodes
 Node 1
 Node 2
 Node 3

- Fare clic su **Nodo 1 (Node 1)** nel modo illustrato.
- Selezionare **Tempo (Time)** per l'asse X dal menu a discesa.
- Selezionare Accelerazione traslazionale (Translational Acceleration) per l'asse Y dal menu a discesa.
- Selezionare **g** come unità dal menu a discesa.

4 Visualizzare il grafico dei tempi.

- Fare clic su OK nel PropertyManager di Grafico dei tempi (Time History Plot). Visualizzare il grafico.
- Chiudere il grafico dei tempi.
- 5 Salvare e chiudere il modello.
 - Fare clic su Save (Salva) 🔙
 - Fare clic su Finestra (Window), Chiudi tutto (Close All) nella barra dei menu.

Analisi di ottimizzazione

L'analisi di ottimizzazione consente al progettista di soddisfare le specifiche progettuali senza sprecare materiale ed evitando la sovraprogettazione. Anche una riduzione di peso apparentemente insignificante da decine di componenti può tradursi in un forte risparmio sui costi di produzione spedizione e confezionamento. Con SolidWorks Simulation è anche possibile verificare i progetti applicandovi materiali più leggeri o a costo inferiore.

Eseguire l'analisi di ottimizzazione su EndCap. L'obiettivo dell'analisi è di ridurre al minimo la massa di EndCap. Con l'analisi si intende ottimizzare lo spessore del labbro di EndCap e delle nervature.

Creazione di un'analisi di ottimizzazione

1 Aprire la parte.

3

- Fare clic su Apri (Open) 🖄 nella barra dei menu.
- Fare doppio clic su EndCap nella cartella SeaBotix\SolidWorks Simulation Professional\ Optimization. La configurazione EndCap (con nervature) appare nell'area grafica.
- 2 Visualizzare lo studio statico 1.

Eseguire lo studio 1.

 Per questa parte era stato creato uno studio statico. Fare clic sulla scheda Studio 1 (Study 1) in fondo all'area grafica. Si visualizza lo studio 1.

Fare clic su Esegui (Run) 🎽 nella scheda

Mises-) appare nell'area grafica.

Simulation del CommandManager. Visualizzare i grafici creati nella cartella Risultati (Results). Il

grafico Sollecitazione1 (-von Mises-) (Stress1 -von

Y 🔇 🤌 📂 🛄-Look in: 😂 Optimization Finished EndCap.SLDPRT File name ¥ Open -Files of type: SolidWorks Files (*.sldprt; *.sldasm; *.slddrw) Cancel Description: <None> Ruick view References. iolidWorks Premium 2010 SolidWorks Premium 2010 \Lambda Study 1 (-Add Rib-) 🖰 EndCap (-[SW]AISI 1020-) Connections Fixtures 🥵 Restraint-3 🛃 External Loads Heressure-1 (:1500 psi:) ↓ Force-1 (:Per item: 54182 lb S A Mesh 🛨 🔚 Results 6 Z 100 Results Run Deformed Compar Advisor Results Simulation ffice Products Study 1 (-Add Rib-) 🖰 EndCap (-[SW]AISI 1020-) Connections Fixtures 🍪 Restraint-3 🛃 External Loads Heressure-1 (:1500 psi:) 📕 Force-1 (:Per item: 54182 lb 🐝 Mesh Results Stress1 (-vonMises-)

陆 Displacement1 (-Res disp-)

- 4 Creare uno studio di ottimizzazione.
 - Fare clic con il pulsante destro del mouse sulla scheda **Studio 1 (Study 1)** in fondo all'area grafica.
 - Fare clic su Crea nuovo studio del design (Create New Design Study). Si visualizzano la scheda Studio del progetto 1 (Design Study 1) e la finestra di dialogo Studio del progetto (Design Study).

- **Nota:** È anche possibile fare clic su Simulation, Studio del progetto (Design Study) nella barra dei menu.
 - 5 Selezionare la prima variabile di progetto (lo spessore di EndCap) per lo studio di ottimizzazione.
 - Fare clic su Aggiungi parametro (Add Parameter) nel menu a discesa Variabili (Variables). Si visualizzano i parametri e la finestra di dialogo Aggiungi parametri (Add Parameters).

EndCap.

Ruotare il modello con il pulsante centrale del mouse e ingrandire la quantità di spessore .150 del labbro di EndCap.

- Fare clic sulla quota .150 nel modo illustrato. La quota selezionata viene visualizzata nella finestra di dialogo Aggiungi parametri (Add Parameters).
- Immettere SpessoreEndCap (EndCapThickness) come nome. Fare clic su Applica. Le informazioni sono aggiunte nella finestra di dialogo Parametri (Parameters).
- 7 Selezionare la seconda variabile di progetto (lo spessore della nervatura) per lo studio di ottimizzazione.
 - Fare clic sulla quota .150 di spessore della nervatura di EndCap nel modo illustrato. La quota selezionata viene visualizzata nella finestra di dialogo Aggiungi parametri (Add Parameters).
 - Immettere SpessoreRib (RibThickness) come nome.

- Fare clic su OK nella finestra di dialogo Aggiungi parametri (Add Parameters). Le informazioni sono aggiunte nella finestra di dialogo Parametri (Parameters). Visualizzare la finestra di dialogo Parametri (Parameters).
- Fare clic su **OK** nella finestra di dialogo Parametri (Parameters).

Name:	RibThickness		
Comment (optional):			
Filter:	Model dimensions	~	
Туре:	Linear Dimension	~	
User defined value:	0.15 in		
Model dimension:	D1@Sketch3@EndCap.Part		

Name	Туре	Unit	User defined va	Current value	Express	Commen
EndCa	Length/Di	in	0.15	0.15	D8@Ske	
RibThi	Length/Di	lin	0.15	0.15	D1@Ske	

- 8 Espandere la cella Variabili (Variables) nello studio del progetto.
 - Fare clic sulla **freccia del menu a discesa** nella cella Variabili (Variables). Visualizzare i risultati.

Run	Optimization			Total active	scenarios: 9					
ua v di	EndCapThickness	Range with step 🗸	Min:	0.075in	-	Max:	0.225in	\$ Step:	0.075in	;
	RibThickness	Range with step 🖌	Min:	0.075in	\$	Max:	0.225in	\$ Step:	0.075in	
🗆 Con	straints Click here to add i	k č Constraints 🗸						 		

9 Impostare i range delle variabili nello studio del progetto.

- Selezionare Range dal menu a discesa di SpessoreEndCap (EndCapThickness).
- Selezionare Range dal menu a discesa di SpessoreRib (RibThickness).
- Immettere i valori indicati per lo spessore di EndCap (Min: e Max:) e per lo spessore della nervatura (Min: e Max:).

EndCapThickness	Range	~	Min:	0.05in	-	Max:	0.2in	-
RibThickness	Range	~	Min:	0.05in		Max:	0.2in	1
Click here to add	Variables	~					h?	

10 Impostare un vincolo Sensore per monitor (Sensor to monitor) per lo studio.

- Fare clic su Aggiungi sensore (Add Sensor) nel menu a discesa Vincolo. Si visualizza il PropertyManager di Sensore (Sensor).
- Selezionare Dati di Simulation per Tipo di sensore (Sensor Type).
- Selezionare Sollecitazione (Stress) come risultato.
- Selezionare **psi** come unità.
- Fare clic su **OK** ✓ nel PropertyManager di Sensore (Sensor).

- 11 Impostare le condizioni del vincolo.
 - Selezionare è minore di (ls less than) per la sollecitazione.

0	nstraints							
	Stress1	Is less than	X	Max:	60000 psi 🖕	**	Study 1	*
	Click here to	add Constraints	N.		K	`		

Constraints

- Immettere **60.000** come condizione Max.
- 12 Impostare un obiettivo Sensore per monitor (Sensor to monitor) per lo studio.
 - Fare clic su Aggiungi sensore (Add Sensor) nel menu a discesa Obiettivo (Goals). Si visualizza il PropertyManager di Sensore (Sensor).
 - Accettare il tipo di sensore di default: Proprietà di massa

(Mass Properties). Fare clic su **OK** *nel* PropertyManager di Sensore (Sensor).

Maximize

- 13 Impostare la condizione per l'obiettivo.
 - Selezionare **Ridurre al minimo**.

14 Eseguire lo studio del progetto.

Fare clic sul pulsante Esegui (Run). Si visualizza la tabella dei risultati che si aggiorna durante l'esecuzione dello studio. La procedura può richiedere alcuni minuti. Visualizzare la tabella completata. È ora possibile interagire con i risultati.

Variab	le View	Table	View Resu		(ř
Rup	🔽 Optim	ization			
43	DikThicke		Papera		
	RIDTHICK	less	Range	×	
	Click he	re to add	l Variables	~	
🖃 Cons	straints				
🗆 Cons	straints				
Con:	straints Stress1		Is less than	~	
Con:	straints Stress1 <i>Click he</i>	re to add	Is less than Constraints	*	
Con:	straints Stress1 <i>Click he</i>	re to ado	Is less than Constraints	*	
Cons	straints Stress1 <i>Click he</i>	re to add	Is less than Constraints	*	
E Cons	straints Stress1 <i>Click he</i> s Mass1	re to add	Is less than <i>Constraints</i>	× ×	

Study 1 Tr Design Studis exactly

SolidWorks	File Edit View	Insert Tools	Simulation	Toolbox	Window Help	2 -	8 ?	. 🗆 ×
Study Advisor Study							Ī	Z
Features Sketch Ev	aluate DimXpert	Office Produ	cts Simul	ation			_	a ×
S S	»		Q Q 😽	🕅 🎬 •	🗇 • 6o • 🍕	▶ & + 🍛 +		
SindCap (Add Rib< <add< td=""><td>Rib>_Disp</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-530</td></add<>	Rib>_Disp							-530
Apportations			/		1			en la companya de la
🕀 🙀 Lights, Cameras and	Scene		//	/				
-3 = AISI 1020			111					
Plane1	4				0)			-
Plane3	ð					11		
🕂 🗘 Origin			11	/				
⊕				1		/		
CirPattern1		I						
🕀 🔲 Cut-Extrude1								
Eilet1		X						
<	>							
Presign Study 1		* 11 ar			M			
🗄 🛅 Results and Graphs	11 of 11 sceparios	rap successfully	Design Study	w 🛛 🖂	nb (Right Click +	Rup to calculate	e accurate resul	ts for a
				Current	Initial	Optimal	Iteration 1	H ^
	EndCanThickness]		0.125in	0.15in	0.125in	0.2in	0.05ir
	RibThickness	J		0.05in	0.15in	0.05in	0.2in	0.2in
		- 60000 poi			25072 mai	Enneo mai	22000 mai	1 450 ¥
< >								>
Model M	otion Study 1 🛛 😽	Study 1 🖫 D	esign Study	1				-
SolidWorks Premium 2010						Editing Part	?	9 3

15 Interagire con i risultati.

- Fare clic sulla colonna Iniziale (Initial).Fare clic sulla colonna Ottimale
- (**Optimal**). Confrontare le due colonne.
- Nota: È possibile esaminare uno dei progetti trascinando il cursore di SpessoreEndCap (EndCapThickness) o SpessoreRib (RibThickness).

		Current	Initia	Optimal	
ndCapThickness		0.15in 🗳	0.15in 🤨	0.125in	
RibThickness		— 0.15in 🗘	0.15in	0.05in	
Stress1	< 60000 psi	35973 psi	35973 psi	59268 psi	
Mass1	Minimize	1.91678 kg	1.91678 kg	1.70618 kg	
		Current	Initial	Optirgal	
EndCapThickness			0.15in	0.125in	
RibThickness	0	- 0.05in 🗘	0.15in	0.05in	
Stress1	< 60000 psi	59268 psi	35973 psi	59268 psi	
		4 700401	4.04070.00	4 7004 0 Lu	

		Current		
EndCapThickness		0.125in 🍣		
RibThickness	J	0.05in		
Stress1	< 60000 psi	59268 psi		
Mass1	Minimize	1.70618 kg		

¶ P D

- 16 Visualizzare i risultati di tendenza.
 - Fare clic con il pulsante destro del mouse sulla cartella Risultati e grafici (Results and Graphs).
 - Fare clic su Definisci grafico di tendenza locale (Define Local Trend Graph). Si visualizza il PropertyManager di Tendenza locale (Local Trend). Visualizzare le opzioni.
 - Fare clic su Vincolo (Constraint). Accettare le impostazioni predefinite.
 - Fare clic su **OK** *s* nel PropertyManager. Visualizzare i risultati nell'area grafica.

P Design Study	1 V.					
Stri	Purge Results Define Design History Graph					
-	Define Local Trend Graph					
	Customize Menu					
1						
	Local Trend Graph ?					
~	×					
De	sign variables (X-Axis) 🛛 🕅					
	EndCapThickness					
¥-,	Axis 🔗					
	Objective Constraint					
	Stress1					
Lo	cal trend at 🛛 🔗					
	Optimal 💉					

- 17 Chiudere la finestra di dialogo Grafico1 (Graph1).
 - Fare clic su Chiudi (Close).

- 18 Salvare e chiudere il modello.
 - Fare clic su Save (Salva) 🖩.
 - Fare clic su Finestra (Window), Chiudi tutto (Close All) nella barra dei menu.

Analisi della fatica

È stato osservato che il carico e lo scarico ripetuto indebolisce gli oggetti con il passare del tempo, anche quando le sollecitazioni indotte sono considerevolmente inferiori ai limiti consentiti. Questo fenomeno prende il nome di fatica. Ogni ciclo di variazione della sollecitazione indebolisce in qualche modo l'oggetto. Dopo un numero di cicli, l'oggetto diventa così debole che cede. La fatica è la prima causa del cedimento di molti oggetti, specialmente quelli di metallo.

L'assieme SeaBotix LBV150 contiene un assieme facoltativo, di nome MiniGrab. In questo studio, si analizzerà la parte 3 Finger Jaw che montata su SeaBotix LBV150 serve per afferrare e trattenere gli oggetti prelevati dai fondali marini. Prima di creare l'analisi della fatica, eseguire un'analisi statica con una forza applicata alle punte di 3 Finger Jaw.

Assieme MiniGrab

Creazione di un'analisi di fatica

- 1 Aprire la parte.
 - Fare clic su Apri (Open) 🖄 nella barra dei menu.
 - Fare doppio clic su **3 Finger Jaw** nella cartella SeaBotix\SolidWorks Simulation\Fatigue.

2 Creare uno studio di analisi statica.

- Fare clic sulla freccia del menu a discesa Advisor dello studio (Study Advisor) nella scheda Simulation del CommandManager.
- Fare clic su **Nuovo studio (New Study)** <a>. Si visualizza il PropertyManager di Studio (Study).

- Immettere Studio statico 1 (Static-Study 1) come nome.
- Fare clic su **Statico (Static)** <u>**K**</u> come tipo.
- 3 Visualizzare lo studio statico 1.
 - Fare clic su **OK** ✓ nel PropertyManager di Studio (Study).
- **Nota:** La scheda Studio statico 1 (Static-Study 1) si visualizza nell'angolo inferiore dell'area grafica.

Applicazione del materiale

- 1 Applicare il materiale.
 - Fare clic su **Applica materiale (Apply Material)** nella scheda Simulation del CommandManager. Si visualizza la finestra di dialogo Materiale (Material).
 - Espandere Lega di alluminio (Aluminum Alloys).
 - Fare clic su Lega 6061-T6(SS) (6061-T6(SS) Alloy). Visualizzare le proprietà del materiale.
 - Fare clic su **Applica**.
 - Fare clic su Chiudi (Close). Il materiale viene applicato alla parte.
- Nota: Il segno di spunta verde 🚿 sulla cartella Parti (Parts) indica che il materiale è assegnato alle parti.

	Properties Tables 8	Curves A	ppearance Cro	ssHatch	Custom	Application Data	F
3 5052-H32	Material propertie	5					
5052-034	Materials in the i	default librar to edit it	ry can not be edit	ed. You m	iust first	copy the material t	0
5052-439	a coscon library				S16		
5052-H30 Pod (55)	Model Type:	Linear E	lastic Isotropic	~			
52-0	Units:	SI - N/m	^2 (Pa)	~	1		
152-0 Rod (55)			- (-)	CO.S	1		
186-H32 Rod (55)	Category:	Aluminiu	um Alloys				
154-O. Rod (SS)	Name:	6061-T6	5 (55)		1		
454-H111	Default failure	0001 10	- ()				
5454-H112	criterion:	Max vor	n Mises Stress	V.			
5454-H32	Description:						
454-H34							
454-0	Source:						
061 Alloy				1			_
1-0 (55)	Property		Value	Units			_
1-T4 (SS)	Elastic modulus		6.90000067e+L	10 N/m*2			
1-T6 (SS)	Shear modulus		2.60000013e+0	N/A 110 Nim^2			
53-57	Mass density		2700	ka/m^	3		
coco Name : '6061-T6 (SS)'	Tensile strength		310000002.1	N/m^2			
1001	Compressive Stren	igth in X		N/m^2			
Description : 163 Appearance : 'satin finish aluminum'	 Yield strength 		275000000.9	N/m^2			
Description : Appearance : 'satin finish aluminum' XHatch : 'ANSI38 (Aluminum)'	the second se	Thermal expansion coefficient		K			
Description : D63 Appearance : 'satin finish aluminum' D63 (XHatch : 'ANSI38 (Aluminum)' D63-T5	Thermal expansion	coomoion	100.0	10.00	10		
Description : Appearance : 'satin finish aluminum' XHatch : 'ANSI38 (Aluminum)' 3-T5 3-T6	Thermal expansion Thermal conductivit	ty	166.9	W/m	ю		
³³ Description : ³³ Appearance : 'satin finish aluminum' 33 X Hatch : 'ANSI38 (Aluminum)' 33-T5 53-T6 53-T6, Rod (SS)	Thermal expansion Thermal conductivi Specific heat Material Damping R	ty etio	166.9 896	VW(m J/(kg·)	K) K)		
0003 Description : 0063 Appearance : satin finish aluminum 0063-XtHatch : /ANSI38 (Aluminum) 0063-T5 0663-T6 0663-T6, Rod (SS) 0663-T63	Thermal expansion Thermal conductive Specific heat Material Damping R	ty atio	166.9 896	VV/(m J/(kg·) N/A	K) K)		
0003 Description : 0063 Appearance : 'satin finish aluminum' 0063 XHatch : 'ANSI38 (Aluminum)' 0063-T5 0063-T6 0063-T6, Rod (SS) 0063-T63 050-T73510	Thermal expansion Thermal conductivi Specific heat Material Damping R	ty atio	166.9 896	VVI(m J/(kg-) N/A	к) 4)		

Study Advisor	Apply Material	Fixtures Advisor	Externa Loads.	al Connection Adviso	ons Run r
-		*	*	+	+
Features	Sketc	h Eval	luate	DimXpert	Office P

∰ Fixtures ➡ External Loads % Mesh

Aggiunta di un vincolo

- 1 Aggiungere un vincolo.
 - Fare clic sulla freccia del menu a discesa Advisor del vincolo (Fixture Advisor) nella scheda Simulation del CommandManager.
 - Fare clic su **Cardine fisso (Fixed Hinge)**. Si visualizza il PropertyManager di Vincolo (Fixture).
- 2 Selezionare la faccia cilindrica da fissare.
 - Fare clic sulla faccia cilindrica interna del foro di 3 Finger Jaw. Si visualizza Faccia<1> (Face<1>). Notare il simbolo di riscontro sull'icona corrispondente a una faccia.
 - Fare clic su OK Inel PropertyManager di Vincolo (Fixture). Si visualizza Cardine fisso-1 (Fixed Hinge-1).

- 3 Aggiungere un secondo vincolo.
 - Fare clic sulla freccia del menu a discesa Advisor dello studio (Study Advisor) nella scheda Simulation del CommandManager.
 - Fare clic su Vincoli avanzati (Advanced Fixtures). Si visualizza il PropertyManager di Vincolo (Fixture). Applicare un supporto radiale alla faccia destra.

- 4 Selezionare la faccia cilindrica interna.
 - Fare clic sulla casella Su facce cilindriche (On Cylindrical Faces).
 - Ruotare il modello per visualizzare la faccia cilindrica laterale come illustrato.
 - Fare clic sull'asola della faccia interna nel modo illustrato. Si visualizza Faccia<1> (Face<1>).
- 5 Selezionare le unità e i componenti di spostamento.
 - Selezionare pollici (inch) dal menu a discesa Unità (Units).
 - Fare clic sulla casella **Radiale (Radial)**.
- 6 Applicare il secondo vincolo.
 - Fare clic su **OK** I nel PropertyManager di Vincolo (Fixture). Si visualizza Su facce cilindriche-1 (On Cylindrical Faces-1).

Applicazione di una forza

- 1 Applicare una forza.
 - Fare clic sulla freccia del menu a discesa Carichi esterni (External Loads) nella scheda Simulation del CommandManager.
 - Fare clic su **Forza (Force)** ■. Si visualizza il PropertyManager di Forza/Torsione (Force/Torque).
 - Selezionare la casella Normale (Normal).
- 2 Selezionare la faccia di contatto.
 - Ruotare il modello con il pulsante centrale del mouse per visualizzare la faccia di contatto superiore, nel modo illustrato.
 - Fare clic sulla faccia di contatto superiore. Faccia<1> (Face<1>) appare nella casella Facce per forza normale (Faces for Normal Force).

- 3 Impostare le unità e il valore.
 - Selezionare Inglese (IPS) (English IPS) nella casella Unità (Units).
 - Immettere **30** lbf come valore di forza.
- **Nota:** 30 lbf è la forza normale che l'assieme MiniGrab può applicare per trattenere un oggetto prelevato dal fondale marino.
 - 4 Applicare la forza.
 - Fare clic su **OK** I nel PropertyManager di Forza/Torsione (Force/Torque). Si visualizza Forza-1 (Force-1).

Creazione della mesh ed esecuzione del modello

- 1 Creare la mesh ed eseguire il modello.
 - Fare clic sulla freccia del menu a discesa Esegui (Run) nella scheda Simulation del CommandManager.
 - Fare clic su Crea mesh (Create Mesh)
 Si visualizza il PropertyManager di Mesh (Mesh).
 - Selezionare la casella Esegui (risolvi)
 l'analisi (Run (solve) the analysis).
 - Fare clic su **OK** *I* nel PropertyManager di Mesh. Visualizzare i risultati. Vengono creati tre grafici.
- 2 Adattare il modello all'area grafica.
 - Premere il tasto f. Visualizzare il grafico Sollecitazione1 (-vonMises-) (Stress1 vonMises-) nell'area grafica.

Generare un grafico di controllo della fatica

- 1 Creare un nuovo studio di fatica.
 - Fare clic con il pulsante destro del mouse sulla cartella Risultati (Results).
 - Fare clic su Definisci grafico di controllo della fatica (Define Fatigue Check Plot). Si visualizza il PropertyManager di Grafico di controllo della fatica (Fatigue Check Plot).
- 2 Visualizzare il grafico di controllo della fatica.
 - Fare clic sul pulsante Carico totalmente inverso (Fully Reversing Load). Visualizzare i risultati nell'area grafica. Esiste un potenziale problema attribuibile alla fatica.

■ Fare clic su Annulla (Cancel) N nel PropertyManager di Grafico di controllo della fatica (Fatigue Check Plot).

SolidWorks Simulation

Creazione di un nuovo studio di fatica

- 1 Creare un nuovo studio di fatica.
 - Fare clic sulla freccia del menu a discesa
 Advisor dello studio (Study Advisor) nella scheda Simulation del CommandManager.
 - Fare clic su Nuovo studio (New Study) Si visualizza il PropertyManager di Studio (Study).
 - Immettere Studio di fatica 1 (Fatigue-Study 1) come nome.
 - Selezionare **Fatica (Fatigue)** come tipo.
- 2 Visualizzare lo studio.
 - Fare clic su **OK** ✓ nel PropertyManager di Studio (Study). Visualizzare lo studio di fatica 1.
- Nota: La scheda Studio di fatica 1 (Fatigue-Study 1) si visualizza nell'angolo inferiore dell'area grafica.

3 Visualizzare l'evento di carico.

- Fare clic sulla freccia del menu a discesa
 Fatica (Fatigue) nella scheda Simulation del CommandManager.
- Fare clic su Aggiungi episodio (Add Event)
 Si visualizza il PropertyManager di Aggiungi evento (costante) (Add Event -Constant).
- Selezionare Studio statico 1 (Static-Study 1) dal menu a discesa.
- Immettere **10.000** cicli.
- Fare clic su OK nel PropertyManager Aggiungi evento (costante) (Add Event -Constant).
- Fare clic su **3 Finger Jaw** nell'albero dello studio. Visualizzare i risultati.

- 4 Modificare i dati di fatica.
 - Fare clic con il pulsante destro del mouse su **3 Finger Jaw**.
 - Fare clic su Applica/Modifica dati di fatica (Apply/Edit Fatigue Data). Si visualizza la finestra di dialogo Materiale (Material).
 - Selezionare la casella Deriva dal Modulo Elastico del materiale (Derive from material Elastic Modulus).
 - Selezionare Log-log dall'area Origine (Source).
 - Fare clic su Applica.
 - Fare clic su **Chiudi (Close)**. Visualizzare i risultati.

5 Eseguire lo studio.

- Fare clic su Esegui (Run) Manager. Visualizzare la cartella Risultati (Results).
- Nota: Il valore 10.000 cicli rappresenta circa 100 cicli/ immersione x 1.000 immersioni/anno x 10 anni di durata prevista dell'apparato.

- 6 Visualizzare il grafico della durata.
 - Doppio clic sulla cartella Risultati2 (-Durata-) (Results2 -Life-). Si visualizza il grafico della durata.
- 7 Visualizzare il PropertyManager di Opzioni grafiche (Chart Options).
 - Fare doppio clic su Grafico della durata (Life Plot) nell'area grafica. Si visualizza il PropertyManager di Opzioni grafico (Chart Options).

- 8 Invertire il colore dei risultati nel grafico.
 - Espandere la casella **Opzioni di colore (Color Options)**.
 - Fare clic sulla casella Inverti (Flip).
 - Fare clic su OK nel PropertyManager di Opzioni grafiche (Chart Options). Visualizzare i risultati nell'area grafica.

Applicazione di un fattore di carico

- 1 Applicare un fattore di carico.
 - Fare clic con il pulsante destro del mouse sulla cartella Risultati (Results).
 - Fare clic su Definisci grafico della fatica (Define Fatigue Plot). Si visualizza il PropertyManager di Grafico della fatica (Fatigue Plot).
 - Selezionare la casella Fattore di carico (Load Factor).
 - Fare clic su **OK** rel PropertyManager di Grafico della fatica (Fatigue Plot). Visualizzare la cartella Risultati (Results).
- 2 Salvare e chiudere il modello.
 - Fare clic su Finestra (Window), Chiudi tutto (Close All) nella barra dei menu.

Conclusione di SolidWorks Simulation Professional

In questa breve sessione si è avuto modo di sperimentare direttamente la funzionalità delle applicazioni di SolidWorks Simulation Professional. SolidWorks Simulation Professional offre tutte le capacità analitiche di SolidWorks Simulation, alle quali si aggiungono altri tipi di analisi: analisi termica, frequenza, carico di punta, ottimizzazione, fatica e test di caduta.

Prendete in esame gli effetti prodotti su parti e strutture meccaniche dalle variazioni di temperatura, Le variazioni di temperatura su parti meccaniche e strutture possono incidere significativamente sulle prestazioni di un progetto.

Valutate le frequenze proprie o i carichi di deformazione di compressione critici e le corrispondenti forme modali. Aspetto spesso trascurato, i modi vibrazionali inerenti ai componenti strutturali ed ai sistemi meccanici di sostegno possono inficiare la durata di un prodotto e provocare guasti imprevisti.

Ottimizzate un progetto secondo criteri personalizzati. L'ottimizzazione progettuale determina automaticamente il progetto ottimale in base a criteri definiti dall'utente.

Simulate il test di caduta di un oggetto su una vasta gamma di superfici. Se la parte o l'assieme dovesse cadere, identificate il punto di cedimento e la sua resistenza agli urti.

Studiate gli effetti di carico ciclico e le condizioni operative di fatica. Prendete in esame gli effetti della fatica sulla vita complessiva della parte o dell'assieme, per stabilirne la durata e identificare le rettifiche progettuali che la potrebbero prolungare.

SolidWorks Flow Simulation

Completando questo capitolo si acquisirà dimestichezza con le potenti funzioni di SolidWorks Flow Simulation, tra cui:

- I vantaggi dell'uso dell'analisi fluidodinamica.
- La facilità d'uso di SolidWorks Flow Simulation per eseguire l'analisi di un modello.
- Le fasi per eseguire l'analisi preliminare di un progetto.
- IL'integrazione tra SolidWorks Flow Simulation e SolidWorks.
- La riduzione dei costi realizzata dalla prototipazione virtuale che permette di risparmiare le risorse.
- La capacità di documentare automaticamente i risultati dell'analisi.

SolidWorks Flow Simulation

SolidWorks Flow Simulation è il primo software per l'analisi termica e la simulazione fluidodinamica integrato in SolidWorks, caratterizzato da un'estrema semplicità di utilizzo. Si utilizzerà SolidWorks Flow Simulation per esaminare, verificare e migliorare le idee per i nuovi prodotti durante la fase di progettazione.

SolidWorks Flow Simulation consente di esaminare in dettaglio parti e assiemi in relazione al flusso di fluidi, trasferimento di calore e forze esercitate su corpi immersi o circostanti.

Si utilizzerà la procedura guidata di SolidWorks Flow Simulation per analizzare l'attrito esercitato dall'assieme SeaBotix LBV150 mentre si sposta in acqua. Queste informazioni sono essenziali per scegliere la dimensione adeguata dei propulsori necessaria affinché l'assieme assolva la sua funzione.

Avvio di una sessione con SolidWorks Flow Simulation

- 1 Aprire l'assieme SeaBotix LBV150.
 - Fare clic su Apri (Open) 🖄 nella barra dei menu.
 - Fare doppio clic su LBV_ASSY nella cartella SeaBotix\SolidWorks Flow Simulation. Nell'area grafica si visualizza una versione semplificata del modello.

2 Attivare il modulo SolidWorks Flow Simulation.

- Fare clic sulla freccia del menu a discesa
 Opzioni (Options) a nella barra dei menu.
- Fare clic su **Aggiunte (Add-Ins)**. Si visualizza la finestra di dialogo Aggiunte (Add-Ins).
- Selezionare la casella SolidWorks Flow Simulation 2010.
- Fare clic su OK nella finestra di dialogo Aggiunte (Add-Ins). Nel CommandManager si visualizza la scheda Flow Simulation.

- 3 Avviare la procedura guidata di SolidWorks Flow Simulation.
 - Fare clic sulla scheda Flow Simulation nel CommandManager.
 - Fare clic sullo strumento **Creazione**
 - guidata (Wizard) Si visualizza la finestra di dialogo Creazione guidata - Configurazione del progetto (Wizard - Project Configuration). Crea nuovo (Create new) è selezionato di default. Accettare le impostazioni predefinite.
 - Fare clic su Avanti> (Next>). Si visualizza la finestra di dialogo Creazione guidata - Sistema di unità (Unit System).
 - Fare clic su IPS (in-Ibs-s) come sistema di unità.
 - Fare clic sulla casella **Unità (Unity)** in corrispondenza di Velocità (Velocity).
 - Fare clic su Nodo (Knot) dal menu a discesa.
 - Fare clic su Avanti> (Next>). Si visualizza la finestra di dialogo Creazione guidata - Tipo di analisi (Wizard - Analysis Type).

Solid Works	File	Edit	View	Insert	Tools	Toolbox	Flow Sin	nulation
Wizard B New Clops	General Settings		Flow Simulati.		⊳ Run	Load/Unioa Results	1 1 <u>2</u> 1 1 <u>2</u> 1 12	⊗
Asser Create a new Flo	w Simulati	ion pr	oject	Office	Produ	cts Flow	Simulat	ion

Wizard - Project Configuration			? 🗙
Wizard - Project Configuration	Configuration © Create new O Use current Configuration name: Current configuration: Comments:	Default (1) Default	
	< Back	Next> Cancel Help	

System	Path		(Comme	nt	
CGS (cm-g-s)	Pre-Defi	ned	C	GS (cn	n-g-s)	
FPS (ft-lb-s)	Pre-Defi	ned	F	PS (ft-I	D-S)	
IPS (in-lb-s)	Pre-Defi	ned	IF	PS (in-It	o-s)	
NMM (mm·g·š)	Pre-Defii	ned	N	IMM (m	m-g-s)	
SI (m-kg-s)	Pre-Deni	ned	5	l (m-kg	-sj	
Create new	Name:	IPS fin	ı-lb-s) (modi	fied)		
				,		
Parameter		Units	Decimal P	aces	1.0 Unit SI =	- ^
- Main						
Main Pressure & stress		lbf/in^2	4		0.00014503	17
Main Pressure & stress Velocity		lbf/in^2	4		0.00014503 1.94384449	17
Main Pressure & stress Velocity Mass		Ibf/in^2	4 0 vecond		0.00014503 1.94384449 2.20462248	17
Main Pressure & stress Velocity Mass Length		Ibf/in^2 Meter/s	4 0 econd ter/hour		0.00014503 1.94384449 2.20462248 39.3700787	17
Main Pressure & stress Velocity Mass Length Temperature		Ibf/in^2 Meter/ Kilomet Mile/ho	4 0 Second ter/hour ur		0.00014503 1.94384449 2.20462248 39.3700787 -459.67	17
Main Pressure & stress Velocity Mass Length Temperature Physical time		Ibf <i>i</i> in^2 Meter Kilomet Mile/ho Knot	4 0 second ter/hour ur		0.00014503 1.94384449 2.20462248 39.3700787 -459.67 1	17
Main Pressure & stress Velocity Mass Length Temperature Physical time Connection Connected Connected	victio	lbf <i>i</i> in^2 Meteri Kilomet Mile/ho Knot ∢ Foot/se	4 0 ter/hour ur econd		0.00014503 1.94384449 2.20462248 39.3700787 -459.67 1	17
Main Pressure & stress Velocity Mass Length Temperature Physical time Geometrical Characte	ristic	Ibf/in^2 Meter Kilomet Mile/ho Knot Foot/se	4 0 Vecond Vecond Vecond Vecond		0.00014503 1.94384449 2.20462248 39.3700787 -459.67 1	17
Main Pressure & stress Velocity Mass Length Physical time Ceometrical Characte Loads&Motion	ristic	Ibf/in^2 Meter/A Kilomet Mile/ho Knot Foot/se Inch/se Yard/se	4 0 ter/hour ur econd econd econd		0.00014503 1.94384449 2.20462248 39.3700787 -459.67 1	
Main Pressure & stress Velocity Mass Length Temperature Physical time Geometrical Characte Loads&Motion	ristic	Ibf/in*2 Meter/2 Kilomet Mile/no Knot Foot/se Inch/se Yard/s Centim Millimet	4 0 ter/hour ur econd econd econd eter/second	d	0.00014503 1.94384449 2.20462248 39.3700787 -459.67 1	
Main Main Velocity Mass Length Physical time Loads&Motion Loads&Motion	ristic	Ibf/in*2 Meter/2 Kilomet Mile/ho Knot Foot/se Yard/s Centim Millimet Ecotim	4 0 econd econd econd econd eter/second eter/second eter/second	d	0.00014503 1.94384449 2.20462248 39.3700787 -459.67 1	

- Fare clic sulla casella Esterno (External) per Tipo di analisi (Analysis type).
- Fare clic su Avanti> (Next>). Si visualizza la finestra di dialogo Creazione guidata - Fluido di default (Wizard - Default Fluid).

Analysis type	Consider closed cavities	»
🔘 Internal	Exclude cavities without flow conditions	11
External	Exclude internal space	
Physical Features	Value	
Heat conduction in	solids	
Radiation		
Time-dependent		
Gravity		
Rotation		
Hererence axis: X	Dependency	»
< Back	Next > Cancel Help	

- Espandere la cartella Liquidi (Liquids).
- Fare clic su Acqua (Water).
- Fare clic sul pulsante Aggiungi (Add). L'acqua si visualizza nella casella Fluidi del progetto (Project Fluids).
- Fare clic su Avanti> (Next>). Si visualizza la finestra di dialogo Creazione guidata - Condizioni della parete (Wizard - Wall Conditions). Accettare le impostazioni predefinite.
- Fare clic su Avanti> (Next>). Si visualizza la finestra di dialogo Creazione guidata - Condizioni iniziali e ambientali (Wizard - Initial and Ambient Conditions).

Project Fluids	Default Fluid	Remove
Water (Liquids)		
Flow Characteristic	Value	
	Laminar and Turbulant	-
Flow type	Laminar and runbulent	

- Fare doppio clic nella casella Valore (Value) di Velocità in direzione X (Velocity in X direction) nel modo illustrato.
- Immettere **2** kn come velocità.
- Fare clic su Avanti> (Next>). Si visualizza la finestra di dialogo Creazione guidata -Risultati e risoluzione della geometria (Wizard - Results and Geometry Resolution).
- **Nota:** La velocità operativa è impostata a due nodi.
 - 4 Completare la procedura guidata di SolidWorks Flow Simulation.
 - Accettare tutte le impostazioni predefinite. Fare clic sul pulsante **Fine (Finish)**.

Parameter	value
Parameter Definition	User Defined
🖃 Thermodynamic Parameters	
Pressure	14.6959473 lbf/in^2
Temperature	68.09 °F
Velocity Parameters	
Velocity in X direction	2 kn
Velocity in Y direction	ONA
Velocity in Z direction	0 kn
Turbulence Parameters	
	Dependency

Result re	solution							>
1	2	3	4	5	6	7	8	[[
		-Ń-		1		1		
- Minimum	ann eine							
	yap size			:				
Man	uai specirio	ation of th	e minimun	i gap size				
Minimum	num gap si n gap size:		o the reatl	ire aimens				
							4	
Minimum	wall thickn ual specific	iess ation of th	e minimun	n wall thick	ness			
 Minir	num wall th	ickness re	fers to the	e feature d	mension			
Minimum	n wall thick	ness:						
							1	
Advanc	ed narrow:	channel re	efinement	v 0	ptimize thin	i walls reso	olution	
	_							
	< Ba	ack	Finish		Cancel		Help	J

5 Visualizzare la simulazione.

Premere il tasto z tre o quattro volte per ridurre le dimensioni di visualizzazione del modello. Il cubo che circonda il modello simula l'acqua del mare attorno all'assieme.

6 Analizzare l'attrito.

- Fare clic sulla scheda dell'albero di analisi
 - Flow Simulation
- Espandere la cartella Dati di input (Input Data).
- Fare clic con il pulsante destro del mouse su Obiettivi (Goals).
- Fare clic su Inserisci obiettivi globali (Insert Global Goals). Si visualizza il PropertyManager di Obiettivi globali (Global Goals).
- Scorrere verso il basso e selezionare la casella Max in Componente X di forza (X-Component of Force).
- Fare clic su **OK** *I* nel PropertyManager di Obiettivi globali (Global Goals).

Parameter						~	3
Parameter	Min	Av	Max	Bulk Av	Use	^	
Velocity					<		
X - Component of Velocity					~		
Y - Component of Velocity					~		
Z - Component of Velocity					~		
Mach Number					~		
Turbulent Viscosity					~		
Turbulent Time					~		
Turbulent Length					~		
Turbulent Intensity					~		
Turbulent Energy					~		
Turbulent Dissipation					~		
Heat Flux					~		
Heat Transfer Rate					~		
Normal Force					~		
X - Component of Normal Force					~		
Y - Component of Normal Force					~		
Z - Component of Normal Force					~		4
Force					~		
X - Component of Force	[R	2	~		١ſ
Y - Component of Force			Là		~		
Z - Component of Force				X - Comp	onen	t of F	ore
Shear Force					~		Т
X - Component of Shear Force					~		
Y - Component of Shear Force					~	V	

- 7 Eseguire l'analisi.
 - Fare clic su Esegui (Run) nella scheda Flow Simulation del CommandManager. Si visualizza la finestra di dialogo Esegui (Run).
 - Selezionare 1 CPU nel menu a discesa.
 - Fare clic sul pulsante **Esegui (Run)**.
- **Nota:** Per questioni di tempo, interrompere l'analisi e aprire la cartella Risultati (Results) per esaminare i risultati.
 - 8 Fermare l'analisi.
 - Fare clic su Stop nella casella del solutore.
 - Fare clic su No quando appare la domanda "Salvare i risultati? (Do you want to save the results?)"
 - Fare clic su **File**, **Chiudi (Close)** nel menu principale del solutore.

9 Aprire la configurazione utilizzata per generare i risultati.

- Fare clic sulla scheda ConfigurationManager
- Fare doppio clic sulla configurazione Default (3) nel modo illustrato.
- Fare clic sulla scheda dell'albero di analisi Flow
 Simulation
- Fare clic con il pulsante destro del mouse sulla cartella Risultati (Results).
- Fare clic su Risultati di carico (Load Results). Si visualizza la finestra di dialogo Risultati di carico (Load Results).

LBV_ASSY Configuration(s) (Default (3))

Po Default (3) [LBV_ASSY]

🕫 Defanti (1) [LBV_ASSY] 🕫 Defaulti [LBV_ASSY]

Computational Domain

GG X - Component of Force 1

Fluid Subdomains
Boundary Conditions

Load Results Select Results Plot Manager... Parameter List... Batch Results Processing...

🧐 😭 😵

😽 Default (3) 🚊 🄑 Input Data

😑 🏁 Goals

📲 Re

- Fare doppio clic su **3.fld** nella cartella 3.
- 10 Creare un grafico di sezione.
 - Espandere la cartella **Risultati (Results)**.
 - Fare clic con il pulsante destro del mouse sulla cartella Grafici di taglio (Cut Plots).
 - Fare clic su Inserisci (Insert). Si visualizza il PropertyManager di Grafici di taglio (Cut Plots). Il piano frontale è selezionato di default.

- Espandere LBV_ASSY dal FeatureManager mobile. Visualizzare le funzioni.
- Fare clic sul pulsante Impostazioni vista (View Settings) nel PropertyManager di Grafico di taglio (Cut Plot). Si visualizza la finestra di dialogo Impostazioni vista (View Settings).

	l
🧐 😭 😫	E- 1 LBV_ASSY (Default (3)< <de.< th=""></de.<>
🐼 Cut Plot ?	
🔨 🗙 00, -1	Hights Compress and Score
Selection &	South Carleras and Scene
	Todat
Pront	
	+ (-) Bumper Side, Plastic R.,
A Din	• () Europer Side, Plastic R.,
	• (-) Flow<1>-> x (Default
	DI MateGroup1
Display 🔗	
Contours	
🥘 Isolines	
22 United	
vectors	
Mesh	
	9
Options 🛛 🕹	j.
Region 🛛 🕹	
View Settings	

- Fare clic sulla scheda Contorni (Contours).
- Selezionare Velocità (Velocity) dal menu a discesa di Parametro (Parameter).
- Fare clic su **OK** nella finestra di dialogo Impostazioni vista (View Settings).
- 11 Visualizzare il grafico di sezione.
 - Fare clic su OK nel PropertyManager di Grafico di taglio (Cut Plot). Visualizzare il grafico di sezione nell'area grafica.

- 12 Visualizzare il dominio computazionale.
 - Se necessario, fare clic con il pulsante destro del mouse sulla cartella Dominio computazionale (Computational Domain).
 - Fare clic su **Mostra (Show)**. Visualizzare il dominio.
- 13 Nascondere il dominio computazionale.
 - Fare clic con il pulsante destro del mouse sulla cartella Dominio computazionale (Computational Domain).
 - Fare clic su Nascondi (Hide).
- 14 Creare un secondo grafico di taglio.
 - Fare clic con il pulsante destro del mouse sulla cartella Grafici di taglio (Cut Plots).
 - Fare clic su Inserisci (Insert). Il piano frontale è selezionato di default.

15 Cambiare il piano selezionato.

- Espandere LBV_Assy dal FeatureManager mobile.
- Fare clic sul piano Superiore (Top) dal FeatureManager mobile. Superiore (Top) si visualizza nella casella Selezione piano/faccia (Selection plane/face).

16 Continuare al secondo grafico di taglio.

- Fare clic sul pulsante Impostazioni vista (View Settings).
- Fare clic sulla scheda Contorni (Contours).
- Selezionare Pressione (Pressure) dal menu a discesa di Parametro (Parameter).
- Fare clic su OK nella finestra di dialogo Impostazioni vista (View Settings). Visualizzare i risultati nell'area grafica.

- 17 Visualizzare il secondo grafico di sezione.
 - Fare clic su **OK** *nel* PropertyManager di Grafico di taglio (Cut Plot).
- **Nota:** Fare clic sulla scheda dell'**albero FeatureManager** nel modo illustrato per visualizzare l'intera area grafica.

- 18 Nascondere i grafici di sezione.
 - Fare clic con il pulsante destro del mouse sulla cartella Grafici di taglio (Cut Plots).
 - Fare clic su **Nascondi tutto (Hide All)**. Visualizzare il modello nell'area grafica.

Applicazione delle traiettorie di flusso

Le traiettorie di flusso sono visualizzate sotto forma di scie. Queste scie sono curve laddove il vettore della velocità di flusso è tangente a un punto qualsiasi della curva.

Applicazione delle traiettorie di flusso

- 1 Creare una traiettoria di flusso.
 - Fare clic con il pulsante destro del mouse sulla cartella Traiettorie di flusso (Flow Trajectories).
 - Fare clic su Inserisci (Insert). Si visualizza il PropertyManager di Traiettorie di flusso (Flow Trajectories).
 - Espandere LBV_Assy dal FeatureManager mobile.
 - Fare clic sul piano **Destro (Right)**. Nella casella dell'entità di riferimento appare Right (Destro).
 - Spostare il cursore Offset nel modo illustrato al valore -21 circa.
 - Fare clic su OK nel PropertyManager di Traiettorie di flusso (Flow Trajectories).
 Si visualizza Traiettorie di flusso 1 (Flow Trajectories 1).
 - **Ridurre le dimensioni** e **ruotare** il modello per visualizzare il grafico.

- 2 Modificare la traiettoria di flusso.
 - Espandere la cartella **Traiettorie di flusso (Flow Trajectories)**.
 - Fare clic con il pulsante destro del mouse su Traiettorie di flusso 1 (Flow Trajectories 1).
 - Fare clic su **Modifica definizione (Edit Definition)**. Si visualizza il PropertyManager di Traiettorie di flusso (Flow Trajectories).
 - **Fissare con la puntina** il PropertyManager di Traiettorie di flusso (Flow Trajectories).
 - Immettere **100** come numero di traiettorie, nel modo illustrato.
 - Fare clic su OK nel PropertyManager di Traiettorie di flusso (Flow Trajectories). Visualizzare il modello.
 - Fare clic su Linee con frecce (Lines with Arrows) dal menu a discesa della casella Opzioni (Options).
 - Fare clic su OK nel PropertyManager di Traiettorie di flusso (Flow Trajectories). Visualizzare il modello.
 - Togliere la puntina Al PropertyManager di Traiettorie di flusso (Flow Trajectories).
 - Fare clic su **OK** *Integration* nel PropertyManager di Traiettorie di flusso (Flow Trajectories). Visualizzare il grafico. Se necessario, fare clic sull'albero FeatureManager per nasconderlo o fare clic e trascina la barra di pressione.

	on nu-file r) - h -	
	Surface Plo	nots ite	
X	Isosurface	5	
	Flow Trajed	tories	
	Flow T	n da na fa	16.1
#	Particle St	Hide AS	ition
1	XY Plots	Clear and	Hide
1	Point Para	Animate.	
📲 Flo	ow Trajec	tories	?
~ \$			
<u>S</u> tart	ing P _{Keep}	Visible	~
	Y _z		
B	Right		
>	-21 267327	78 in	
4 0		0	*
	- J		-
₿#	100 🗲	_	*
×	0.0393700	787 in	* *
Ontic	ins		
2,000	•••• •••	+	~
*	Lines with a	Arrows	*
×	0.7874015	75 in 🖊	*
ആം	Q	0.	00
	Use CAD) geometry	
Cons	traints		⇒
	View Se	ttings	
	1047.00	-congorn	

Isosurfaces

Particle Studi

Point Parame

Surface Para

XY Plots

1

Flow Trajectories

Edit Definition

Clear and Hide

00.00

Hide

Area

- 3 Animare lo studio delle traiettorie di flusso.
 - Fare clic con il pulsante destro del mouse sulla cartella **Traiettorie di flusso 1 (Flow Trajectories 1)**.
 - Fare clic su Animare (Animate). In fondo all'area grafica si visualizza la scheda Animazione 1 (Animation 1).
 - Fare clic su **Esegui** ▶. Visualizzare l'animazione del modello.
 - Fare clic su **OK** nella barra degli strumenti Animazione per tornare al FeatureManager.

\ "		▶</th <th><u>ନ</u> ଜ</th> <th>• • 🖻</th> <th>More</th> <th></th> <th>00:00</th> <th>1</th>	<u>ନ</u> ଜ	• • 🖻	More		00:00	1
1	Mode	el Motio	n Study -	Default	Motion Stud	dy 1	Animatio	11

4 Modificare la traiettoria di flusso.

- Se necessario, fare clic con il pulsante destro del mouse sulla cartella Traiettorie di flusso 1 (Flow Trajectories 1).
- Fare clic su Nascondi (Hide). Visualizzare l'area grafica.

5 Impostare gli obiettivi.

- Espandere la cartella **Risultati (Results)**.
- Fare clic con il pulsante destro del mouse sulla cartella **Obiettivi (Goals)**.
- Fare clic su Inserisci (Insert). Si visualizza la finestra di dialogo Obiettivi (Goals).
- Selezionare la casella GGX-Componente di forza 1 (GGX-Component of Force1).
- Fare clic su OK nella finestra di dialogo Obiettivi (Goals). Si visualizza la finestra di dialogo Obiettivi (Goals). Visualizzare le opzioni.

Goall	Vame 💌	f Goal Name			
	A	В	C	D	E
1		LBV_ASSY	.SLD	ASM [De	fault (3)]
2					
3		Goal Name	Unit	Value	Averaged Value
4	l	GG X - Component of Fo	rce [lbf]	2.99267495	3.015539819
8 9 10 11 12 13	▶ \Summ	Iterations: 54 Analysis interval: 2 ary / X - Component of F	2 4	nt Data /	

- 6 Visualizzare il grafico Excel.
 - Fare clic sulla scheda Componente X di forza (X - Component of Force) in basso.
 - Visualizzare il grafico.
- 7 Chiudere il grafico Excel e tornare a SolidWorks Flow Simulation.
 - Fare clic su **File**, **Esci (Exit)** nella barra dei menu di Excel.
 - Selezionare **No** se un messaggio invita a salvare.
- 8 Salvare e chiudere il modello.
 - Fare clic su File, Chiudi (Close) nel menu principale di SolidWorks.
 - Fare clic su **Sì (Yes)** quando un messaggio invita a salvare.

Add-Ins

SolidWorks Flow Simulation

Durante questa breve sessione d'uso di SolidWorks Flow Simulation, sono stati introdotti seppur in modo succinto i principali concetti della simulazione fluidodinamica. SolidWorks Flow Simulation consente di esaminare in dettaglio parti e assiemi in relazione a flusso di liquidi, trasferimento di calore e forze esercitate su corpi immersi o circostanti.

L'unico prodotto di fluidodinamica totalmente integrato con SolidWorks, SolidWorks Flow Simulation è estremamente semplice da utilizzare. È sufficiente comunicare al software le proprie finalità, invece di dover tradurre gli obiettivi analitici in criteri di convergenza numerica e numeri iterativi.

Utilizzate i modelli fisici dei fluidi per applicazioni tecniche. SolidWorks Flow Simulation è in grado di analizzare un'ampia gamma di fluidi reali quali aria, acqua, succhi, gelato, miele, colate plastiche, dentifricio e sangue. Active Add-ins Start Up SolidWorks Premium Add-ins 🔲 🌺 3D Instant Website CircuitWorks KaratureWorks
 PhotoWorks 🗌 🏓 ScanTo3D 🔲 🏹 SolidWorks Design Checker SolidWorks Motion SolidWorks Routing ColidWorks Simulation SolidWorks Toolbox 🔽 🚏 SolidWorks Toolbox Browser SolidWorks Utilities SolidWorks Workgroup PDM 2010 TolAnalyst SolidWorks Add-ins Autotrace SolidWorks 2D Emulator ~ SolidWorks Flow Simulation 2010 SolidWorks MTS SolidWorks XPS Driver OK Cancel

Ciò lo rende perfettamente rispondente alle esigenze dei progettisti in qualsiasi settore.

Simulate le condizioni del mondo reale. SolidWorks Flow Simulation offre molti tipi di condizioni al contorno per rappresentare situazioni reali.

Automatizzate le operazioni legate al flusso fluido. SolidWorks Flow Simulation mette a disposizione diversi strumenti di automazione per semplificare l'analisi e ottimizzare il lavoro.

Interpretate i risultati mediante strumenti di visualizzazione potenti ed intuitivi. Al termine dell'analisi, gli strumenti di visualizzazione dei risultati in SolidWorks Flow Simulation permettono di studiare la prestazione dei modelli.

Collaborate e condividete i risultati dell'analisi. SolidWorks Flow Simulation favorisce la collaborazione e la condivisione dei risultati con chiunque sia coinvolto nel processo di sviluppo prodotti.

SolidWorks Motion

Completando questo capitolo si acquisirà dimestichezza con le potenti funzioni di SolidWorks[®] Motion, tra cui:

- I vantaggi dell'uso dell'analisi cinematica.
- La facilità d'uso di SolidWorks[®] Motion per eseguire l'analisi di un modello.
- Le fasi per eseguire l'analisi cinematica di un progetto.
- L'integrazione tra SolidWorks Motion e SolidWorks.
- La comprensione degli aspetti legati alle prestazioni e alla riduzione dei tempi prima della prototipazione fisica.

SolidWorks Motion

SolidWorks[®] Motion è un prodotto per la simulazione dei sistemi meccanici e assicura il corretto funzionamento di un meccanismo prima che questo sia realizzato concretamente.

SolidWorks Motion:

- Darà la certezza che un assieme funzioni come previsto, senza la collisione tra le parti mentre queste si muovono.
- Aumenta l'efficacia del processo di progettazione meccanica fornendo una capacità di simulare un sistema meccanico all'interno dell'ambiente familiare di SolidWorks.
- Utilizzare un solo modello, senza trasferimento della geometria e di altri dati da applicazione ad applicazione.
- Eliminare il costo generato dalle modifiche del progetto in fase finale del processo di produzione.
- Velocizzare il processo di progettazione riducendo le costose iterazioni a seguito di cambiamenti.

In questa sessione eseguiremo l'analisi dell'assieme Gripper.

Avvio di una sessione con SolidWorks Motion

- 1 Aprire l'assieme Gripper.
 - Fare clic su Apri (Open) nella barra dei menu.
 - Fare doppio clic sull'assieme
 Gripper Motion 2010 nella cartella SeaBotix\SolidWorks Motion.
- 2 Attivare SolidWorks Motion.
 - Fare clic sulla freccia del menu a discesa
 - Opzioni (Options) Inella barra dei menu.
 Fare clic su Aggiunte (Add-Ins). Si visualizza
 - la finestra di dialogo Aggiunte (Add-Ins).
 - Selezionare la casella SolidWorks Motion.
 - Fare clic su **OK** nella finestra di dialogo Aggiunte (Add-Ins).

Look in: [SolidWorks Motion	~	G	Ø	Þ	
🚞 Finished						
Gripper M	lotion 2010.SLDASM					
2						
File name:						<u> </u>
File name:	*SLDASM		•			Open 🗸
File name: Files of type:	*.SLDASM (Assembly (".asm," sldasm)					Open 🗸
File name: Files of type: Description:	*.SLDASM Assembly (".asm;" sldasm) <none></none>					Open - Cancel

- 3 Iniziare uno studio con SolidWorks Motion.
 - Fare clic sulla scheda Studio del movimento 1 (Motion Study 1) in fondo all'area grafica.
 - Fare clic sulla **freccia del menu a discesa** per la gestione degli studi del movimento.
 - Selezionare Analisi del movimento (Motion Analysis). Visualizzare le selezioni disponibili in questa casella.

Applicazione del movimento a un componente

Un motore lineare (attuatore) è un dispositivo che impartisce un movimento traslazionale a un componente. Un motore lineare in SolidWorks Motion sposta il componente selezionato ad una velocità costante o variabile.

Applicare un motore lineare al componente Push-Pull Plate dell'assieme Gripper. Il motore lineare sposterà il componente Push-Pull Plate di una distanza specificata entro un tempo specificato. Questa azione provocherà la chiusura delle ganasce di Gripper.

Applicazione di un moto lineare

- 4 Applicare un motore lineare.
 - Ingrandire il componente **Push-Pull Plate**.
 - Fare clic sulla faccia del componente Push-Pull Plate dell'assieme Gripper nel modo illustrato.
- **Nota:** Visualizzare il simbolo sull'icona e il riscontro con le informazioni.
 - Fare clic sull'icona Motore (Motor) an nella barra degli strumenti Motion Manager. Si visualizza il PropertyManager di Motore (Motor).
 - Fare clic sulla casella Motore lineare (attuatore) come Tipo di motore (Motor Type).
 - Fare clic sul pulsante Direzione contraria (Reverse Direction). La freccia direzionale è rivolta verso l'interno.
 - Selezionare Distanza (Distance) nel menu a discesa di Tipo di movimento (Motion Type).
 - Immettere 8 mm nella casella Motore spostamento (Displacement motor).
 - Immettere **0** nella casella Inizio (Start time).
 - Immettere **.1** nella casella Durata (Duration).
 - Fare clic sulla faccia del componente Push-Pull Plate dell'assieme Gripper come direzione del motore, nel modo illustrato. La freccia direzionale è rivolta all'indietro.
 - Fare clic su OK nel PropertyManager di Motore (Motor). MotoreLineare1 (LinearMotor 1) si visualizza nel FeatureManager.
 - Se necessario, fare clic sullo strumento **Zoom**
 - indietro (Zoom Out) er visualizzare la linea temporale dello studio del movimento.
 - Fare clic sullo strumento Proprietà studio di movimento (Motion Study Properties)

Visualizzare le opzioni. Accettare le impostazioni predefinite.

Fare clic su OK nel PropertyManager di Proprietà studio di movimento (Motion Study Properties).

Applicazione delle forze

Le forze definiscono i carichi e i vincoli sulle parti. Le forze possono opporre resistenza al movimento, come nel caso di molle e ammortizzatori, ma possono anche indurre il movimento.

Ai componenti di 3 Finger Jaw è applicata una forza. Per simulare le condizioni di carico, si eseguiranno queste operazioni:

- Selezionare la superficie di contatto centrale su una delle tre ganasce.
- Inserire una forza applicata di sola azione pari a 62 N sulla ganascia selezionata.
- Ripetere la procedura con le altre due ganasce.
- Creare ed eseguire una simulazione.
- Calcolare la forza di reazione in corrispondenza del cardine della ganascia.
- Creare un percorso traccia per la punta di una ganascia.

Applicazione di una forza alle ganasce di Gripper

- 5 Selezionare una faccia di contatto.
 - Ruotare l'assieme Gripper con il pulsante centrale del mouse per visualizzare le facce interni di una ganascia, nel modo illustrato.
 - Ingrandire la prima faccia di contatto selezionata.
- **Nota:** Selezionare una qualsiasi delle tre ganasce di Gripper.
 - Fare clic sulla faccia di contatto della ganascia nel modo illustrato.
 - 6 Applicare la forza.
 - Fare clic sull'icona Forza (Force) nella Barra degli strumenti Motion Manager. Si visualizza il PropertyManager di Forza/Torsione (Force/Torque).
 - Fare clic sulla casella Forza (Force) come Tipo di forza (Force Type).
 - Fare clic sulla casella Solo azione (Action only) come direzione.
 - Fare clic sul pulsante Direzione contraria (Reverse Direction). La freccia direzionale è rivolta verso la ganascia.
 - Immettere **62 N** per Valore costante (Constant Value).
 - Fare clic su OK I nel PropertyManager di Forza/Torsione (Force/Torque). Forza1 (Force1) si visualizza nel FeatureManager.

- 7 Applicare una forza di contatto alle altre due ganasce.
 - **Ripetere le fasi 5 e 6** per le altre due ganasce di Gripper. Ultimata questa fase, dovrebbero apparire tre forze e un motore lineare nel FeatureManager dello studio, come illustrato.

modori Analysis 💌 🎆 🕪 🔛 🗐	L. C. C. C.					8.5		- 4 <u>-</u>	2 3			×
乙羟基 必 归	0 sec	a a	12	5 sec	3	15	T.	10 sec	E	T.	31	1
Gripper Motion 2010 (Default-CDisp Orientation and Camera Views Lights, Cameras and Scene Force1 Force1 Force2 (Main Housing <1> (Default < (Main Housing <1) (Default < (Main Ho	-											
Model Motion Study 1												

8 Creare una simulazione in SolidWorks Motion.

Trascinare la chiave più a destra in alto nella barra temporale in corrispondenza di
Gripper di 1 secondo all'indietro, nel modo illustrato. Potrebbe essere necessario ingrandire la barra per una migliore visualizzazione.

9 Eseguire la simulazione in SolidWorks Motion.

■ Fare clic sull'icona **Calcola (Calculate)** . Visualizzare l'assieme mentre si sposta durante l'analisi.

- 10 Calcolare la forza di reazione in corrispondenza del cardine.
 - Fare clic sull'icona Risultati e Grafici (Results and Plots) I nella barra degli strumenti Studio del
 - movimento. Si visualizza il PropertyManager di Risultato (Result).
 - Selezionare Forze (Forces) dal menu a discesa Risultato (Result).
 - Selezionare Forza di reazione (Reaction Force) come sottocategoria del menu a discesa Risultato (Result).
 - Selezionare Modulo (Magnitude) come componente di risultato dal menu a discesa Risultato (Result).
 - Espandere la cartella Accoppiamenti (Mates) nel FeatureManager dello studio.
 - Fare clic su **Concentrico 2 (Concentric 2)** nella cartella Accoppiamenti (Mates).
 - Fare clic su **OK** *I* nel PropertyManager di Risultati (Results).
 - Fare clic su **No** per chiudere il messaggio. Visualizzare il grafico.

- Fare clic lungo l'asse temporale e visualizzare le modifiche di Gripper.
- Chiudere la finestra di dialogo del grafico Forza Mod-Concentrico2 (Force Mag-Concentric2).

- 11 Creare un percorso traccia.
 - Fare clic sull'icona Risultati e Grafici (Results and Plots) 🖳 nella barra degli strumenti Studio del movimento. Si visualizza il PropertyManager di Risultato (Result).
 - Selezionare Spostamento/Velocità/Accelerazione (Displacement/Velocity/Acceleration) dal menu a discesa della casella Risultato (Result).
 - Selezionare **Percorso traccia** come sottocategoria dal menu a discesa.
 - Fare clic su un **punto** all'estremità della ganascia come illustrato nell'area grafica. Notare il simbolo di riscontro sull'icona.
 - Fare clic su **OK** 🖌 nel PropertyManager di Risultati (Results).
- Nota: Si visualizza un percorso traccia che indica visivamente il percorso di ogni punto sulla parte in movimento.

12 Modificare una funzione.

- Scorrere in basso nel FeatureManager dello studio.
- Espandere la cartella **Risultati (Results)**.
- Fare clic con il pulsante destro del mouse su Grafico2<PercorsoTraccia1> (Plot2<TracePath1>).
- Fare clic su Modifica funzione (Edit feature). Si visualizza il PropertyManager di Risultato (Result).
- Deselezionare la casella di controllo Mostra vettore (Show vector) nell'area grafica. (In questo modo è possibile nascondere un percorso traccia senza eliminarlo.)
- Fare clic su OK nel PropertyManager di Risultati (Results).
- 13 Ricostruire e salvare l'assieme.
 - Fare clic su **Salva (Save) I** nella barra dei menu.
 - Fare clic su **OK** per chiudere il messaggio.

14 Chiudere tutti i modelli.

■ Fare clic su Finestra (Window), Chiudi tutto (Close All) nella barra dei menu.

Conclusione di SolidWorks Motion

Durante questa breve sessione d'uso di SolidWorks Motion si è dimostrato come utilizzare la simulazione cinematica basata sulla fisica per migliorare la qualità e le prestazioni di un modello. SolidWorks Motion simula le operazioni modifiche di assiemi motorizzati e le forze fisiche che questi generano, determinando fattori come il consumo di potenza e l'interferenza tra le parti in movimento. SolidWorks Motion consente di valutare se il progetto fallirà, i punti di rottura delle parti e di prevedere i potenziali pericoli per la sicurezza di un prodotto.

Sfruttate le potenzialità di SolidWorks. SolidWorks Motion è totalmente integrato in SolidWorks e utilizza i dati esistenti dell'assieme per formulare gli studi di simulazione cinematica.

Trasferite i carichi direttamente in SolidWorks Simulation per l'analisi della sollecitazione. Il trasferimento diretto dei carichi da SolidWorks Motion a SolidWorks Simulation consente di visualizzare sollecitazioni e spostamenti di un componente nello stesso istante o per l'intero ciclo di simulazione.

Simulate le condizioni del mondo reale. Coniugando la cinematica fisica ai dati di assieme provenienti da SolidWorks, SolidWorks Motion soddisfa le esigenze di pressoché qualsiasi settore industriale.

Associate la simulazione cinematica basata sui principi della fisica alle condizioni del **modello**. SolidWorks Motion offre molti tipi di giunti e forze per rappresentare condizioni operative reali.

Interpretate i risultati mediante strumenti di visualizzazione potenti ed intuitivi. Al termine della simulazione cinematica, gli strumenti di visualizzazione dei risultati in SolidWorks Motion permettono di studiare la prestazione dei modelli.

Collaborate e condividete i risultati dell'analisi. SolidWorks Motion favorisce la collaborazione e la condivisione dei risultati con chiunque sia coinvolto nel processo di sviluppo prodotti.

Sede generale

Dassault Systèmes SolidWorks Corp. 300 Baker Avenue Concord, MA 01742 USA Telefono: +1-978-371-5011 Email: info@solidworks.com

Sede europea

Telefono: +33-(0)4-13-10-80-20 Email: infoeurope@solidworks.com

Sede italiana

Telefono : +39-049-8077863 Email: infoitaly@solidworks.com

0